47
SEOUL | Oct.7, 2016 안철오 박사 (메타리버테크놀러지), Oct. 7, 2016 디스플레이 반도체 산업에서 CUDA기술의 응용

디스플레이 및 반도체 산업에서 CUDA기술의 응용 · PDF fileSEOUL | Oct.7, 2016 안철오 박사 (메타리버테크놀러지), Oct. 7, 2016 디스플레이 및 반도체

  • Upload
    vonga

  • View
    243

  • Download
    7

Embed Size (px)

Citation preview

SEOUL | Oct.7, 2016

안철오 박사 (메타리버테크놀러지), Oct. 7, 2016

디스플레이 및 반도체 산업에서 CUDA기술의 응용

2

AGENDA

Company overview

Semiconductor and Display

Thin film deposition process

Electro-Magnetic analysis

Particle-based plasma simulation

3

Linux Cluster (2002~2006)

4

Supercomputer (2007~2008)

5

GPU computing (2008~)

We met Dr. David Kirk

Mar. 11, 2008

at Yonsei University.

6

METARIVER TECHNOLOGY

company Metariver Technology Co., Ltd.

http://www.metariver.kr

address B-801, Garden 5 Works, 52, Chungmin-ro,

Songpa-gu, Seoul, 138-961, Korea

establishment 07/08/2009

business area GPU application software

Particle based multi-physics solver

product

samadii/dem (Discrete Element Method)

samadii/sciv (DSMC, Direct Simulation Monte Carlo)

samadii/em (Electro-Magnetic Simulation)

samadii/plasma (Particle-based plasma simulation)

samadii/lbm (CFD, Lattice Boltzmann Method)

7

TECHNOLOGY MAP

GPU Computing CUDA Technology

Fast Algorithm S/W Acceleration

HPC Technology Supercomputing

samadii/dem Discrete Element Method

samadii/sciv Direct Simulation Monte Carlo

samadii/plasma

Particle-based Plasma simulation

samadii/lbm CFD, Lattice Boltzmann Method

samadii/em Electro-Magnetic Solver

8

9

10

PARTICLE-BASED SIMULATION

• Lagrangian

• Explicit

• Very small time step

• Lots of iterations

• Length scale of particle

• The number of particles (N)

• Sufficient computing performance

• Rendering load

11

SEMICONDUCTOR AND DISPLAY

12

SEMICONDUCTOR Semiconductor production process

10/11/2016

ⒸIntel

Ion implantation (이온주입)

Lithography (노광)

Deposition (증착)

Ashing (애슁)

Etching (식각)

13

DISPLAY PANEL TFT(Thin Film Transistor) production process

10/11/2016

Lithography (노광)

Deposition (증착)

Cleasning (세정)

Etching (식각)

Develop (현상)

TFT processing Glass formation Color filter

processing

Cell and Module

assembly

ⒸCambridge Univ. Press Fabrication steps for TOS TFTs

14

SEMICONDUCTOR VS. DISPLAY PANEL Comparison of the structures

Ⓒsamsung

Schematic structure of (a) semiconductor (b) TFT(display panel)

(a) (b)

Ion implantation Lithography Deposition Ashing Etching

Lithography Deposition Cleansning Etching Develop

15

DEPOSITION

• 물질을 gas형태로 만들어 원하는 표면에 일정 두께로 막을 성형하는 과정 • PVD(Physical Vapor Deposition), APCVD(Atmospheric Pressure Chemical Vapor Deposition),

LPCVD(Low-Pressure CVD), PECVD(Plasma-Enhanced CVD), Sputtering(DC, RF, Magnetron etc.)

crucible

nozzles

target

16

ION IMPLANTATION

www2.austin.cc.tx.us/HongXiao/Book.htm

Introduction to Semiconductor

Manufacturing Technology, HongXiao,Ph.D.

Ion

Source Vacuum

Pump

Analyzer Magnet

Beam Line

End Analyzer

Wafers

Plasma Flooding System

Post Acceleration

Electrode

Extraction

Electrode

Suppression Electrode

Ion beam in

Ion beam out

B-field

Analyzer Magnet

• 이온을 다른 고체 물질에 주입 • 물리화학적 특성을 개질하거나 결정 구조를 변경하기 위한 목적

17

ETCHING AND ASHING Plasma applications

• Plasma Etching 회로패턴을 형성하기 위해 특정부분의 막을 선택적으로 제거

• Plasma Ashing 경화층 제거 및 유기물/오염물질 제거 (화공약품을 사용하는 습식 세정방식 대체)

Gabriel I. Font-Rodriguez, Cornell University

Plasma Etch Reactor Plasma Etching

http://www.plasmaetch.com/

Oxygen plasma (Asher)

18

THIN FILM DEPOSITION PROCESS

19

DSMC (DIRECT SIMULATION MONTE CARLO)

Length scale [m]

a numerical method for modeling rarefied gas dynamics

10-11 10-9 10-7 10-5 10-3 10-1

Continuum Transient Kinetic theory

10+4 10+2 10-0 10-2 10-4 10-6

Knudsen number

DSMC Navier-Stokes Eq.

20

RAREFIED GAS

ATMOSPHERE RAREFIED GAS

21

DSMC PARTICLE

The DSMC method models fluid flows using particles which represent a large number of real

molecules.

maximum collision number :

FN : 1011~1015

FN

22

CELL LINKED-LIST Thrust::sort_by_key

10/11/2016

3

6

7

8

9

10

11

12 13

14 16

17 0 6 7 8

3 5

0 1 2

4

2 5

15 4

1

Cell-id

(Hash value)

Particle-id

Thrust::sort_by_key

7 4 4 5 5 4 0 3 2 1 1 6 7 8 2 4 0 6

1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cell-id

(Hash value)

Particle-id

7 4 4 5 5 4 0 3 2 1 1 6 7 8 2 4 0 6

16 6 9 10 8 14 7 1 2 5 15 3 4 11 17 12 0 13

23

SAMPLE CODE

/// 각 입자의 소속 cell주소 pAddrCllp[i].x=floor(( px[i].x - cllpmin.x)* _1cllpsz); pAddrCllp[i].y=floor(( px[i].y - cllpmin.y)* _1cllpsz); pAddrCllp[i].z=floor(( px[i].z - cllpmin.z)* _1cllpsz); /// 각 입자의 hash value phash[i]= pAddrCllp[i].z * cllpN.x * cllpN.y + pAddrCllp[i].y * cllpN.x + pAddrCllp[i].x;

24

SAMPLE CODE

thrust::device_ptr<uint> th_phash(phash); thrust::device_ptr<uint> th_pid(pid); /// phash를 기준으로 particle을 sorting thrust::sort_by_key(th_phash, th_phash+Nb, th_pid, thrust::less<int>()); pid=thrust::raw_pointer_cast(th_pid); phash=thrust::raw_pointer_cast(th_phash);

25

COLLISION

• HS(Hard Sphere)

• VHS(Variable Hard Sphere) Model

Collision cross-section

• Dissociation reaction

• Recombination reaction

• Exchange reaction

AB + T → A + B + T

AB + T ← A + B + T

AB + CD ↔ AC + BD

Chemical reaction

• Elastic collision

• In-elastic collision

- Translation–Rotational Exchange model

- Translation–Vibration Exchange model

Collision

A’ A

26

BOUNDARY CONDITIONS

• Evaporation inlet

: Maxwell-Boltzmann distribution

: cosine distribution

: evaporation temperature

• Particle inlet

• Pressure inlet

Inlet boundary conditions

• Wall

: diffusion rate

: adsorption rate

: wall temperature effect

• Particle outlet

• Pressure outlet

• TMP-outlet

Outlet boundary conditions

27

Maxwell-Boltzmann distribution Cosine distribution

PARTICLE DISTRIBUTIONS

1000 2000 3000 4000

Pro

babilit

y d

ensi

ty

: 500K

: 700K

: 1800K

0 0

0.0005

0.001

0.005

0.2

0.4

0.6

0.8

1.0

1.2

Probability density

: N=0

: N=1

: N=2

28

DEPOSITION RATE TEST #1 Cosine distribution (N)

N=5 N=3 N=1

Single point source

29

DEPOSITION RATE TEST #2 Nozzle length

L=10mm

L=20mm

L=30mm

L=40mm

depth

nozzle length

nozzle length

depth

30

DEPOSITION RATE TEST #3 Nozzle angle

60º 45º 30º 10º 0º -10º -30º -45º

Rate of deposition according to angle

angle

Linear source

31

32

33

ELECTRO-MAGNETIC ANALYSIS

34

.

Magnetic field induced current of coil Electric field induced current of coil Electric wave propagation

Generalized Electro-Magnetic Solver

35

GOVERNING EQUATIONS Maxwell’s Equations

( Faraday’s law )

( Ampere’s law )

( Gauss’s law )

( Gauss’s law-magnetic )

tE

Et

EH

t

BE

B

Er

0

0

( Current conservation )

Magnetostatics Electrostatics Quasi-statics Electric current

Electric wave Electric current (Frequency) Electrodynamics Magnetic wave

36

PARTICLE-BASED PLASMA SIMULATION

37

PARTICLE-BASED PLASMA SIMULATION samadii/plasma

이온과 전자의 충돌에 의한

plasma 반응해석*

전자기장에서

전자와 이온의 거동 해석

Plasma chamber내부

전자기장 해석 이온과 전자 수밀도에 의한

국부적 전자기장 해석

38

PARTICLE-BASED PLASMA SIMULATION

39

PIC (PARTICLE-IN-CELL)

1

0

43

2

0Q 1Q

2Q3Q

4Q

5Q

1

2

3 4

00E

1E

2E

3E

4E

i

j

iV

q

d

j

iN

Q

VE

QV

2

BVEqF ii

40

41

PARTICLE-BASED PLASMA SIMULATION samadii/sciv + samadii/em

Number density Electric potential Electric field

-300V 0V

-2.00e+13

0.00e+0

2.00e+13

4.00e+13

6.00e+13

0 0.06 0.12 0.18 0.24 0.3

Z [m]

Number density

-300V 0V -300V 0V -300V 0V

electron 9.11e-30 [kg]

ion 6.63e-26 [kg] (1:7300)

42

www2.austin.cc.tx.us/HongXiao/Book.htm

Introduction to Semiconductor

Manufacturing Technology, HongXiao,Ph.D.

Ion

Source Vacuum

Pump

Analyzer Magnet

Beam Line

End Analyzer

Wafers

Plasma Flooding System

Post Acceleration

Electrode

Extraction

Electrode

Suppression Electrode

Ion beam in

Ion beam out

B-field

Analyzer Magnet

• 이온을 다른 고체 물질에 주입 • 물리화학적 특성을 개질하거나 결정 구조를 변경하기 위한 목적

Ion Implantation

43

source head

(high voltage)

manipulator

repeller plate

(**kV)

filament

(**kV+600V)

slit1 Slit3

(0V) slit2

(low voltage)

(-**kV)

slit1 Slit2

(low voltage)

(-**kV)

slit3

(0V)

FN : 1.00E+7[#] 이온(BFx+) 생성률 : 3.04E+17 [#/s]

전자 생성률 : 2.72E+17 [#/s]

(약 0.05 [A])

Time step : 2.02E-11[sec.]

N~7,845,600[EA]

Ion Implantation

ion

electron

44

45

RIE (Reactive Ion Etching) Chamber

f=13.56[MHz]

Time step : 0.292[ns] (2.92E-10)

pump-out

(4-side)

chamber

(ground)

wafer

shower head

V0=30[V], V=V0cos(ωt)

H~150

ion electron

46

SEOUL | Oct.7, 2016

THANK YOU