21
1 Edge-bipancyclicity of star graph s under edge-fault tolerant Applied Mathematics and Computation, Volume 183, Issue 2, 15 Decem ber 2006, Pages 972-979 Min Xu, Xiao-Dong Hu and Qiang Zhu : 學 學 學 學學學學 : 學 學 學

學 生 : 蕭 旻 昆

Embed Size (px)

DESCRIPTION

Edge-bipancyclicity of star graphs under edge-fault tolerant Applied Mathematics and Computation ,  Volume 183, Issue 2 ,  15 December 2006 ,  Pages 972-979 Min Xu, Xiao-Dong Hu and Qiang Zhu. 指導教授 : 洪 春 男. 學 生 : 蕭 旻 昆. Outline. Abstract Introduction Star graphs - PowerPoint PPT Presentation

Citation preview

Page 1: 學  生   :  蕭 旻 昆

1

Edge-bipancyclicity of star graphs under edge-fault tolerant

Applied Mathematics and Computation, Volume 183, Issue 2, 15 December 2006, Pages 972-979

Min Xu, Xiao-Dong Hu and Qiang Zhu

學 生 : 蕭 旻 昆

指導教授 : 洪 春 男

Page 2: 學  生   :  蕭 旻 昆

2

• Abstract

• Introduction

• Star graphs

• Edge-pancyclicity of star graphs with edge-fault

Outline

Page 3: 學  生   :  蕭 旻 昆

3

Abstract• It has been shown by Li [T.-K. Li, Cycle embe

dding in star graphs with edge faults, Appl. Math. Comput. 167 (2005) 891–900] that Sn contains a cycle of length from 6 to n! when the number of fault edges in the graph does not exceed n - 3. We improve this result by showing that for any edge subset F of Sn with |F|≤n - 3 every edge of Sn - F lies on a cycle of every even length from 6 to n! provided n≥3.

Page 4: 學  生   :  蕭 旻 昆

4

Introduction• [7] showed that any cycle of even length from

6 to n! can be embedded into Sn. Hsieh et al. [5] and Li et al. [9], proved that the n-dimensional star graph Sn is (n-3)-edge-fault tolerant Hamiltonian laceable for n ≥ 4. Recently, Li [8] considered the edge-fault tolerance of star graphs and showed that cycles of even length from 6 to n! can be embedded into the n-dimensional star graphs when the number of the fault edges are less than n - 3.

Page 5: 學  生   :  蕭 旻 昆

5

Introduction• In Section 2, we give the definition and basic pro

perties of the n-dimensional star graph Sn.

• In Section 3, we discuss the edge-fault-tolerant edge-bipancyclicity of the star graphs.

Page 6: 學  生   :  蕭 旻 昆

6

Star graphs• Lemma 1

(Li [8]). There are n vertex-disjoint Sn - 1’s in Sn for n ≥ 2.

Page 7: 學  生   :  蕭 旻 昆

7

Star graphs

let Hi:j = (Vi:j,Ei:j), where Vi:j = {u V(S∈ n) | u=u1u2…ui…un ,ui = j} and Ei:j = {(u, v) E(S∈ n)u,v V∈ i:j} for 1 ≤j ≤ n. Then {Vi:1,Vi:2, . . . ,Vi :

n} is a partition of V(Sn) and Hi : j is isomorphic toSn - 1. we will use Si:j

n-1 to denote the subgraph Hi : j in the above partition. Specifically, we use Sj

n-1 as the abbreviation of Sn:jn-1 and call it th

e jth (n-1)-dimensional subgraph of Sn.

Page 8: 學  生   :  蕭 旻 昆

8

Hi:j (2314 , 1324 , 2341 , 4321 , 4312 , 1342)

2314

1324

2341

4321

4312

1342

1234

3214 2134

3124

4231

24313241

3421

2413

1423

2143

4123

4213

1243

3412

1432

4132

3142

Page 9: 學  生   :  蕭 旻 昆

9

• For a vertex x,we use xi to denote the ith digits of vertex x. For a set of distinct edges e1=(x1,y1),e2=(x2,y2), . . . , em=(xm,ym) in Si

n - 1 for n≥3 with x1

1 = x21 = . . . = xm

1 = j and y11=y2

1 =ym1=

k, we call the edge set {e1, e2, . . . , em} a set of (i,j,k)-edges. Obviously, a set of (i,j,k)-edges is also a set of (i,k,j)-edges since the edges we discuss in this paper have no direction.

Star graphs

Page 10: 學  生   :  蕭 旻 昆

10

• n=8 , i=5 , j=3 , k=6

• x1 = 34216785

• y1 = 64213785

• x2 = 32761875

• y2 = 62731875

Star graphs

Page 11: 學  生   :  蕭 旻 昆

11

• Theorem 2

The n-dimensional star graph Sn is (n-3)-edge-fault Hamiltonian laceable for n≥4.

Star graphs

Page 12: 學  生   :  蕭 旻 昆

12

• Lemma 3 For any edge e and e’ of S4, there exists a cycle of even length from 6 to 24 in S4 e’containing e.

Proof Since Sn is edge-symmetric, without loss of generality, we assume that e=(1234,3214).By Theorem 2,there exists a Hamiltonian path P connecting the vertices 1234 and 3214 in Sn-e’. Then P + e is a cycle of length 24 containing e in S

4-e’. Let l be any even integer with 6≤l≤22.we need to construct a set of cycles of length l such that the intersection of their edge sets is e.

Page 13: 學  生   :  蕭 旻 昆

13

L = 6L = 8L = 10L = 12L = 14

L = 16 L = 18L = 20L = 22

2314

1324

2341

4321

4312

1342

1234

32142134

3124

4231

24313241

3421

2413

1423

2143

4123

4213

1243

3412

1432

4132

3142

e

Page 14: 學  生   :  蕭 旻 昆

14

• Lemma 4 For any edge e and an edge set F with |F| = n-3 and n ≥ 5, there exists a subgraph Si:j

n-1=(Vi:j,Ei:j) such that e E∈ i : j and |Ei : k∩F |≤ n - 4 for all 1 ≤ k ≤ n.

Page 15: 學  生   :  蕭 旻 昆

15

• Algorithm 5 Input m, n, where n ≥ 4 and 3 ≤ m ≤ n. Output (n-2) disjoint paths. 1. Select arbitrary (n-2)vertices, say a1,a2, .. ,an-2 from V (Sm

n-1) with the first digits equal to 1 2. For i =1 to (n-2) 3. Pi (ai)For j=2 to m 4. v =last Vertex(Pi) //Suppose that v = v1v2 vn-1vn. 5. //last Vertex(Pi) returns the last vertex in Pi. 6. Append vnv2 ..vn-1v1 to Pi

7. Append vlv2 .. vl-1vnvl+1 .. vn-1v1 to Pi where vl = j 8. Append vnv2 .. vn-1v1 to Pi, where v is the last vertex in Pi

9. Output P1,P2, . . . ,Pn-2

Page 16: 學  生   :  蕭 旻 昆

16

• 例 1: n=4 , m=3

1243 , 3241 , 2341 , 1342 , 3142 , 2143

1423 , 3421 , 4321 , 1324 , 3124 , 4123

• 例 2: n=4 , m=4

1234 , 4231 , 2431 , 1432 , 3412 , 2413 , 4213 ,3214

1324 , 4321 , 2341 , 1342 , 3142 , 2143 , 4123 ,3124

Page 17: 學  生   :  蕭 旻 昆

17

1324

1342

3142

4321

4123

3241

2143

1243

2314 2341

4312

1234

32142134

3124

4231

2431

3421

2413

14234213

3412

1432

4132

Page 18: 學  生   :  蕭 旻 昆

18

• Lemma 6

There are (n-2) disjoint paths of length (2m-1) crossing S1

n-1,S2n-1, . . . , Sm

n-1 such that the endpoints of these paths are in Sm

n-1 for n≥3 and 3 ≤ m ≤ n. The endpoints of these paths are adjacent for m = 3,4.

Page 19: 學  生   :  蕭 旻 昆

19

Edge-pancyclicity of star graphs with edge-fault

• Theorem 9

For any edge subset F of Sn with |F| ≤ n-3 and any edge e S∈ n-F, there exists a cycle of even length from 6 to n! in Sn-F containing e provided n ≥ 3.

Page 20: 學  生   :  蕭 旻 昆

20

• Case 1 6 ≤ l ≤ (n-1)! By the induction hypothesis, there exists a cycle C of length l in San

n-1 containing e.Specially, we use C1 and C2 to denote the cycles of length (n-1)!-2 and (n-1)!, respectively.

• Case 2 (n-1)! + 2 ≤ l ≤ 3(n-1)! In this case, we can write l = l1 + l2 + l3 where l1, l2 and l3 satisfy the following conditions:

l1 =(n-1)!-2 or (n-1)!

l2 =2 or 6 ≤ l2 ≤ (n-1)!

l3 =2 or 6 ≤ l3 ≤ (n-1)!

Page 21: 學  生   :  蕭 旻 昆

21

• Case 3 3(n-1)! + 2 ≤ l ≤ n! In this case, we can write l = l1 + l2 + l3 + … + ln where l1 ≥ l2 ≥ l3 ≥…≥ ln and the following restrictions should be satisfied:

l1 = (n-1)!-2 or (n-1)!

l2 = (n-1)!-2 or (n-1)!

l3 = 2 or 6 ≤ l3 ≤ (n-1)!

l4 = 0 or 2 or 6 ≤ l3 ≤ (n-1)! …

ln = 0 or 2 or 6 ≤ ln ≤ (n-1)!