of 175 /175
平成 28 年度環境省委託業務 平成 28 年度潮流発電技術実用化推進事業 (海洋再生可能エネルギーの実用化に向けた 2MW 級潮流発電システム実証事業) 委託業務 成 果 報 告 書 平成 29 年 3 月 九電みらいエナジー株式会社 新日鉄住金エンジニアリング株式会社 特定非営利活動法人 長崎海洋産業クラスター形成推進協議会 オープンハイドロ・テクノロジー・ジャパン株式会社

平成 28 年度環境省委託業務 平成 28 ... - env

  • Author
    others

  • View
    3

  • Download
    0

Embed Size (px)

Text of 平成 28 年度環境省委託業務 平成 28 ... - env

28 29 3
3.2.16. ···················································· 47
3.3.1. ······················································ 50
3.3.2. ······················································ 58
3.3.3. ············································ 71
3.3.4. ·················································· 74
4. ·············································· 77
4.1. ······································· 77
4.1.1. ·········································· 77
4.1.2. ················································ 77
4.1.3. DNV-GL ············································ 78
4.1.4. DNV-GL ······························ 78
4.1.6. (ClassNK) ··························· 84
4.2. ··············································· 85



2
Summary
This is a consortium project that has been consigned by the Ministry of the Environment
to demonstrate the largest 2 MW class tidal power generator in Japan at Naruseto off
the coast of Goto City, Nagasaki prefecture.
The consortium consists of Kyuden Mirai Energy, Nippon Steel Sumikin Engineering,
Nagasaki Marine Industry Cluster Promotion Association and Openhydro Technology Japan.
The purpose of this project is to promptly put into practical use, a tidal power
generation system which has low environmental impact and which will operate seamlessly
in Japan's particular weather and oceanic conditions.
The project period is scheduled for fiscal 2016 to 2019. The main activities in fiscal
2016 are as follows.
(2) Consultation on acquisition of license
(3) Engineering of the tidal generator system
(4) Initial procurement of components and parts of the tidal generator system
(5) Tidal flow simulation
The consortium gained the understanding and cooperation of the local stakeholders in
FY 2016, carried out the tidal flow, and soil surveys and decided on the site for turbine
system installation.
In addition, the consortium has engineered the turbine generator, begun detailed
design of the foundation structure, the installation of the subsea and land cables,
and is developing the installation method for the turbine system.
For the next fiscal year, the ClassNK’s certification, grid interconnection,
consultation on construction plan approval will be undertaken and procurement of
parts and assemblies of the turbine system will continue.
This project is a collaborative project between the Ministry of the Environment (MOE)
and the Ministry of Economy, Trade and Industry (METI). At the Development Study Meeting,
the consortium made a report on progress to and received advice from the experts, MOE
and METI on the project.
3
1.

2.
2.1.








2011
EMEC

8
the EMEC Fall of Warness Test Site
European Marine Energy Centre
evaluation of tidal stream
Recommendations
IEA
on OEA Member Countries

Department of Energy
9






Meygen Phase 1

11






3.2.1.

3.2.2-1
()
2
4 ( 1 1 2 ) 3 ()
3( )

2
4 ( 1 1 2 ) 2 ()
1/2 1m 1/2 2

2
4 ( 1 1 2 ) 3 ()
3( )
2
4 ( 1 1 2 ) 2 ()
0.5m 5m 2 1 2 10
2
4 ( 1 1 2 )
ROV
()
(2)

2
4 ( 2 2)
ROV

(2 )
3 ( )
3
2
2 ( 1 1 )

2
Atag
2
4 ( 1 1 2)

2
18
3.2.3.
0.5m
1/2 1m
3.2.3-1
19

28 11 9 10 3.2.3-2

(m) (m) (m) () (mg/L) () (μg/L) (FTU) (mg/L) (mg/L) ()
0.5 22.2 34.30 8.2 6.8 95.6 3.2 0.2 1.2 <1 <0.2
19.5 22.2 34.30 8.2 6.8 95.0 3.5 0.1 1.2 <1 <0.2
37.9 22.2 34.30 8.2 6.7 94.7 3.7 0.1 1.1 <1 <0.2
0.5 22.0 34.21 8.2 6.9 96.3 3.9 0.2 1.3 <1 <0.2
8.9 22.1 34.21 8.2 6.9 95.6 4.6 0.2 1.2 <1 0.2
16.8 22.0 34.21 8.2 6.9 95.8 4.7 0.2 1.2 <1 0.3
0.5 22.1 34.28 8.2 6.9 95.8 3.3 0.2 1.1 <1 <0.2
18.9 22.1 34.30 8.2 6.8 95.5 4.0 0.1 1.1 <1 0.4
36.7 22.1 34.29 8.2 6.8 95.5 3.5 0.1 1.1 <1 0.4
0.5 22.1 34.27 8.2 7.0 97.8 4.1 0.2 1.2 <1 <0.2
18.4 22.1 34.27 8.2 6.8 95.9 4.6 0.1 1.2 <1 0.2
35.8 22.2 34.27 8.2 6.8 95.7 4.7 0.1 1.0 <1 <0.2



22.022.2
pH 8.2 A7.88.3
DO 6.77.0mg/L 9598

COD 1.01.3mg/L A2mg/L
SS 1mg/L
SS 0.10.2FTU
0.20.4


(m) (m) (m) () (mg/L) () (μg/L) (FTU) (mg/L) (mg/L) ()
0.5 15.3 34.64 8.2 8.1 99.2 1.5 0.0 — — —
20.0 15.3 34.65 8.2 8.0 98.5 6.4 0.2 — — —
38.9 15.3 34.65 8.2 8.0 98.4 5.5 0.3 — — —
0.5 15.9 34.62 8.2 7.8 96.4 3.8 0.1 — — —
10.1 15.9 34.63 8.2 7.8 96.4 4.0 0.1 — — —
19.2 15.9 34.63 8.2 7.7 96.2 4.2 0.1 — — —
0.5 15.8 34.60 8.2 7.9 97.3 5.5 0.3 — — —
19.0 15.8 34.63 8.2 7.8 97.1 4.5 0.2 — — —
36.9 15.8 34.63 8.2 7.8 96.8 4.7 0.2 — — —
0.5 15.3 34.64 8.2 8.0 98.5 4.6 0.2 — — —
19.1 15.3 34.66 8.2 8.0 98.4 5.1 0.1 — — —
37.1 15.3 34.66 8.2 8.0 98.2 5.6 0.2 — — —



15.315.9pH
8.2 A 7.88.3
DO 7.78.1mg/L 9699
a1.56.4μg/L

21
3.2.4.
1/2 1m 1/2


Nauplius larva of Copepoda

48 43
15,716 3,357
St.1 St.1
34 23
16,802 4,696
St.2 St.2
(25.3) (17.2)
(11.4) (14.9)
Copepodite larva of Oithona
42 34
9,946 3,867
Copepodite larva of Oithona
(15.4) (21.2)
38 37
76,048 6,130
Copepodite larva of Oithona
(17.1) (12.8)
(22.2) (22.7)
1/2 1m 3

3.2.5-1
St.5 4158
St.2 Bacteriastrum sp.
Chaetoceros socialeChaetoceros spp.Nitzschia spp. Haptophyceae
spp.
46 41 47
920 320 1,900
51,300 33,920 37,200
78,240 47,600 51,300
Haptophyceae spp. Haptophyceae spp. Bacteriastrum spp.
Nitzschia spp. Nitzschia spp. Haptophyceae spp.
Chaetoceros spp.
St.1 St.1 St.1
()
(/L)
(16.5)

49 58 43
2,000 1,700 720
161,200 96,500 56,680
184,800 109,300 68,640
Chaetoceros spp. Chaetoceros spp. Bacteriastrum spp.
Bacteriastrum spp. Nitzschia spp. Nitzschia spp.
Nitzschia spp.
St.2 St.2 St.2
()
(/L)
(10.2)
43 44 51
1,440 1,440 320
57,600 60,360 47,860
74,880 74,760 52,500
Chaetoceros sociale Chaetoceros spp. Bacteriastrum spp.
Chaetoceros sociale Nitzschia spp.
St.4 St.4 St.4
()
(/L)
(10.0)
55 43 54
900 1,200 2,640
76,800 60,400 101,480
91,400 69,860 124,580
Chaetoceros spp. Nitzschia spp. Nitzschia spp.
Bacteriastrum spp. Chaetoceros spp.
Nitzschia spp. Bacteriastrum spp.
St.5 St.5 St.5
()
(/L)
Haptophyceae sp.
130cm 450cm NGG54
2 10

St.5 715
St.1

3.2.6-3
St.1


4 5






St.6

36
37
3.2.9.
St.1 15 320
110 34.8 50
40
11000 93.7 440 80

70 30.7 50 30
ROV
83.3

38
3.2.10.
2
2
80

13kg 4.4kg
4.2kg


St.3
St.3
m →
:(5%) :(525%) :(2550%) :(5075%) :(75%)
[ ]
[ ]
[ ]




().1().2().3() .1.2.1.2
80
90
()
()() ()
100
3

10030 40 50 60 70
-4.6 -6.1 -6.9
(CDL)


0 10 20 30 40 50 60 70 80 90 100
0
40
St.3

m →
:(5%) :(525%) :(2550%) :(5075%) :(75%)
[ ]
[ ]
[ ]




.1 .2

().2() .2.1.3
1 2 1 10 5
50 60 70 80 90 100

()()
()( ) ()
20 30 40

0

41
3.2.12.
11 21 L-3S-N _1121_1 0
11 21 L-3(N-S)L-2L-1 _1121_2 0
11 22 L-5S-N _1122_1 0
11 22 L-5(N-S)L-4 _1122_2 0



44

84.6103.6dB83.7113.5dB100Hz1KHz
97.2118.7dB 90110dB
110130dB
80120dB

45
3.2.14.
7 2015
27 9NT) 2011 24 3
NT
3.2.14-1
4
No.
DD


23
N S
09:29 2 S -
09:40 3 -
10:05 1
10:07 1
10:12 1 -
10:14 3 -
13:55 3 -
14:20 3 -
14:23 2
15:10 1 () -
15:28 2
15:50 2 -
08:56 2 () -
09:11 3 () -
09:17 3 -
09:21 1
09:26 3 -
09:53 3 -
10:18 1 -
10:37 3 -
10:48 2 -

09:39 1
09:40 2
09:43 1
09:50 3
09:55 2 -
10:19 2 -
10:27 3 -
10:29 3 -
10:55 1
11:23 3 -
14:43 3 -
14:59 1
15:00 3 -
15:03 3 -
15:08 2 -
15:54 1 -
08:27 3
08:48 3 -
08:48 3

49

3.2.16-2

09:46 2 -
09:52 3 S -

27
10:53 2 -
08:30 1 -
08:34 1 -
09:04 1 -
10:10 2 -
10:45 1 -
10:48 2 -
11:22 2 -
11:22 1 -
11:35 3 -
11:38 2 () -
11:47 3 () -
11:52 1 () -
11:57 1 -
11:58 1 () -
13:26 1 -
13:30 3 -
13:45 3 -
13:48 2 -
13:51 1 -
13:58 1 -
08:27 3 -
08:40 3 -
08:53 2 -
09:08 3 -
09:12 1 -
09:20 1 -
09:31 1 -
10:09 3 -
215
214
50
ADCP
ADCP 3.3.1-3 3.3.1-4
Site1 32°49′06.6″N 128°54′37.8″E
3.3.1-1
Site.1
32°49′07.3″N 128°54′37.6″E
2016102520161218
ADCPSignature 500Nortek H 274mm×W220mm

20161024
20161025 ADCP
20161026 ADCP
2016112 ADCP
ADCP 28 10 25 ADCP 28 12 2
52


8Hz
3.3.1-4 ADCP


53

3.3.1-2 11 5 12 15
ADCP
1m
1.5m 35m

1 4
11 14 17 3m/s
11 13 16 11 28 30
2.5m/s
3.3.1-2
2016/11/222016/11/28 11/2111/23 11/2811/30
54

10m
2m/s
3.3.1-3
55
3.3.1-411 7 9 3.3.1-511 1315
20 20.5m
11.5m 11 8 9
1
3.3.1-4
56


10

4 4.5m

B+33.5m
B+19.5m
B+4.5m
12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0
11/7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12/1
-300.0
-150.0
0.0
150.0
-300.0
-150.0
0.0
150.0

11 712 6

1 1
250310cm/s 110
130cm/s

Sonic2024 ()
200kHz 400kHz 1.25cm (× ) 0.5°×1° 256 ()
10°160° 500m
IXSEA
Cast Away CTD
14001730 m/s 100m 5 Hz 0.01 m/s ± 0.15 m/s

EdgeTech4200 2 300/600khz
300kHz3.0cm 600kHz1.5cm
300kHz0.28° 600kHz0.26°
50° DGNSS
V100 0.6m

EdgeTech3200 216kHz 4,000w 610cm 8m
104m DGNSS
3.3.2-8 3D 3.3.2-9
3.3.2-8 1m
3.3.2-9 3D
3.3.2-11
AC1



http://nrb-www.mlit.go.jp/kokjo/tochimizu/F3/ZOOMA/4215/index.html
3.3.2-143.3.2-16
65
50
67

( 3.3.2-17
100 100 100 100 100 100 50
m
1m
4 1 ()

12

3.3.3-2



1
2 →
3 → →
4 → → →
5 → → → →
6 → → → → →

DNVGL-ST-0164 – -
4.1.4.DNV-GL


80










4.1.5-1
83


ClassNK

Environmental data on the tidal flow conditions of the site with predicted 10 minute
averaged flow velocities for peak and average tidal flow velocities covering the
project period from 2018 to 2025.
Environmental data on wave conditions as measured by sensors deployed in the Naru
Strait.
Report document describing the details of the bathymetry of the seafloor at the
deployment site.
Personnel safety report on demonstration of safety considerations for access to the
turbine for installation and O&M.O&M
Report on the Turbine System control philosophy.
Multiple documents on the electrical system and components.

85
4.2.
(
)



66kV 2
4.2.1-1

2,000kW 6.6kV
110kV


(1)22kV 14 14 14 14 14
(2)22kV 8 8 31 31 31
(3)66kV 32 31 28 22 22
(4)66kV 72 49 28 22 22 (66kV)
(5)66kV 72 49 28 22 22
(6)66kV 72 49 28 22 22 (66kV)
(7)66kV 72 49 28 22 22 (66kV)
(8)66kV 72 49 28 22 8 (66kV)

6 6 6 6 6
19 18 18 18 18
11 11 11 11 11
10 10 10 10 10
6 6 6 6 6
1 1 1 1 1
9 10 10 10 10
6 5 5 3 3




6 6 6 6 6
3 3 3 3 3
HP
91
4.3.

4.3.1-1 () 4.3.1-2















48

ADCP
Site1 17.58MWh/m2/yearSite2 17.24MWh/m2/year





()



Profilometer)


(Norsok R-002,
DNVGL-ST-N001)


20
5.2-7 16m
5.2-8






-FMIRR
Turbine Design -Functional Design Specification
-FMIRR
-Blade Design Documents

-Barge/Winch/Recovery Frame Design (Marine Asset Specification)
-System Integration Study (Method Statement for Turbine/TCC/SSB Assembly,
System Commissioning and System Testing)
113

12

16m
OCT03 2017 9
OCT04


116
5.3.
1 1
49 107




6.6k


23 00
70 0

15




2,000k




10. 3 9 3.7 1
8.92 3.77

1/300
29112

T1
T2
T3
T4

1 300
X =- 19 80
X =- 19 65 0
X= - 19 62 0
X =- 19 62 0
X =- 19 59 0
-1972 8.879
-1968 4.573
-1965 3.879
-5 4195.799
-5 4110.157
-5 4177.848
3 .675
3 .678
2 .199
HP9 00
PT.CT




1,590 960


2 120 ()
3 -
4 60 ()
5 60 () 4 44
6 60 ()
7 30 ()
8 30 ()
9 30 ()

5.4.1-1 5.4.1-2
6 11km
3 5km
knot0.5m/s
4 8
5.4.1-2
()
(1.0m/s)
(1.0m/s)
(1.0m/s)
(1.0m/s)
(0.5m/s)
(0.5m/s)
(1.0m/s)
(1.0m/s)



129.0129.5
5.4.1-2 0.5m 5
10m/s





4000PS
4000PS
4000PS
4000PS
45 3040%
5.4.1-3


1 27.7 25.4
2 34.3 30.1
3 33.8 30.4
4 36.8 28.2
5 47.1 33.8
6 25.1 12.9
7 20.9 10.8
8 23.8 13.6
9 39.2 27.4
10 41.8 35.3
11 39.4 32.7
12 35.9 31.4
33.8 26.0
6 6 169
192 4754%
2019
45
4 605 50
50
10
(1) 20194
1 2 3 1 2 3 411 412 413 427 428 429
1 1:00 1:20 1:30 1 1:30 2:20 1:30 14
2 1:10 1:40 2:00 2 1:50 1:50 1:30 58% 3 1:10 1:40 1:20 3 2:00 2:10 1:40 4 1:10 1:20 1:20 4 1:30 1:20 1:10
(2) 20195
1 2 3 1 2 3 511 512 513 526 527 528
1 1:20 1:30 1:20 1 1:30 1:20 1:20 12
2 1:40 1:40 1:20 2 1:50 1:30 1:20 50% 3 1:30 1:40 1:30 3 2:00 1:50 1:30 4 1:10 1:10 1:00 4 1:20 1:20 1:10

1:30
1:23
1:30
1:41
45 4.2 3.1
50%
1knot0.5m/s



33
5.4.2-1





/

2.“”
3.“” DCNS

Lastly, “Useful buying” is based on a partnership between DCNS and its suppliers
that generates real value thanks to the development of innovative solutions,
improved specifications and the reduction of non-quality.

6.1-1




148
Power Conversion System 6.3-2
Export Transformer 6.3-3
Switchgear
Brake Resistor
149
150


(FVCOM)


7.1-1
(S2,M2,O1,K1,P1,Q1,N2,K2 )

ORCOrlanski Radiation Condition

5 8 11 2100

7.2.1-1
2510m

7.2.2-2


7.2.2-1
[m/s]
155
7.2.2-2
7.2.2-3
0 5 10 15 20 25 30 35 40 45
0 1 2 3 4
[ m ]
0 5 10 15 20 25 30 35 40 45
0 1 2 3 4
[ m ]
σ 20


(2016) 2015 ADCP


ADCP

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

30
0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

( 0.102m/s) ADCP

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

25m
ADCP30
ADCP
0 1 2 3 4

0 1 2 3 4

0 1 2 3 4


30 Sta.7
FRA-JCOPE2 reanalysis data
Sta.7





164
7.3.3.
3
2
7.3.3-1U A
TCP TCP
TCP

9%
T C P [ k W ]
(a) (b) TCP
7.3.3-2 TCP

10%
(a) (b)
(c) (d)
30
0
5
10
15
20
25
30
D i s ta






[m ]
[m ]
168
7.4.
11 2
TCP
PR 8-1




2.