65
1 Prof. Dr.-Ing. Detlef Krömker *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen SS 2002 2 Graphische Datenverarbeitung 13. Geometrie-Repräsentationenl © Prof. Dr.-Ing. Detlef Krömker Beschreibt ein Bild (2D) oder eine Szene (3D) durch Ensemble von geometrischen Objekten (Punkte, Linien, Flächen, Körper) Erscheinungsattribute (Farbe, Struktur, Textur, Parametern von Beleuchtungsmodellen, ... ) Betrachtungsbedingungen 5FNEOLFN *HRPHWULHXQG0HUNPDOVHEHQH

 · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

Embed Size (px)

Citation preview

Page 1:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

1

Prof. Dr.-Ing. Detlef Krömker

*RHWKH�8QLYHUVLWlW��)UDQNIXUW

*UDSKLVFKH�'DWHQYHUDUEHLWXQJ

������������ �������� �

Geometrie-Repräsentationen

SS 20022Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

Beschreibt ein Bild (2D) oder eine Szene (3D) durch� Ensemble von geometrischen Objekten

(Punkte, Linien, Flächen, Körper)� Erscheinungsattribute

(Farbe, Struktur, Textur, Parametern von Beleuchtungsmodellen, ... )

� Betrachtungsbedingungen

���������������� ���������

Page 2:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

2

Wichtige UnterscheidungDefinitionsbereich: 2D oder 3D

��: ggf Ausschnitt aus Definitionsbereich darstellen: streng: Window (Teilmenge des Definitionsbereichs) Viewport (Teil des Bildschirms)Window-Viewport Transformation

��: Szene wird durch virtuelle Kamera (Viewing Transformationen, perspektivische Transformation) auf 2D abgebildet

���������������� ���������

y z

x

x

y

-z

SS 20024Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

���������������������������������

������� ��������� ��Vector Files „Zeichnungen“, CAD� HPGL HP Graphics Language (Plottersprache) Hewlett-Packard

� DXF Drawing eXchange Format Autodesk

(original 2D später auf 3D erweitert)

Metafiles (Raster & Vektorgraphik)� CGM Computer Graphic Metafile ISO/IEC

Page Description Language (Seitenbeschreibungssprachen)� PS (EPS) (Encapsulated) PostScript

� PDF Portable Document Format Adobe

Page 3:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

3

SS 20025Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

���������������������������������

������� ��������� ��CAD Formate� IGES Initial Graphics Exchange Specification� STEP Standard for the Exchange of Product Data

Szenen- und Objektbeschreibungssprachen� VRML ������� ������� ��������� ISO/IEC� RIB Renderman Interface Bytestream � Animation� FLT MultiGen Flight� OBJ Wavefront Object Alias

(Wavefront)� MAX 3D Studio Max Kinetix

SS 20026Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

���� ��� !�"���������� �

� Geometrisches Modellieren verschiedene Modellarten und

-Erzeugungsmethoden� Geometrieakquisition:

� Scanner − Übernahme (CAD)� Prozedurales Modellieren

� Fraktale, Grammatiken, ...� “Symbolisches” Modellieren

� kinematische, dynamische, ... Modelleigenschaften� Surface (Volume) Modeling

Material: Farbe, Reflektion, Textur, ..ggf. O-spezifische Lichtquellen

Page 4:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

4

SS 20027Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

#�������

1. Geometrisches Modellieren in 3D -Körpermodelle

2. Polygonale Repräsentationen3. Subdivision Techniken 4. Level of Detail + andere Speedup-Techniken5. Prozedurale Techniken6. Grundsätzliches zu Parametrischen Flächen7. Bézier Kurven und Flächen8. Andere parametrische Beschreibungen9. Übernahme von CAD-Daten und 3D-Scanning

SS 20028Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Gesamtziel� Beschreibung von physikalisch realen Objekten in einem

Modell, welches mathematisch betrachtet eine Punktmenge bzw. Mengen aus Unterräumen des R3

� Graphische Modellierung versus geometrische Modellierung

� Entwicklung� Graphisches Modell (2D)� Drahtgitter-Modell (3D)� Polyhedron-Modell (Polygone)� Freiformflächen-Modell

Page 5:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

5

SS 20029Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

SS 200210Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

Page 6:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

6

SS 200211Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Formale Anforderungen an Modell� Vollständigkeit

� Integrität� Komplexität und geometrische Übereinstimmung

� Modellklassifizierung nach der Dimension� Punktmodell

� Drahtgittermodell (Wire frame)� Flächenmodell (Surface)

� Volumenmodell (Solid)

� Gemischtes Modell (Hybrid)

SS 200212Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Volumenmodell� 3D-Erzeugende

� Flächenmodell� 2D-Erzeugende� Rand des Volumens

� Oberfläche� Manchmal nicht

ausreichend

� Linienmodell(Wire Frame)

� 1D-Erzeugende� Rand einer Fläche� Rand des Randes eines

Volumens

� Nicht ausreichend

Page 7:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

7

SS 200213Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Punktmodell� 0D-Erzeugende

� Element einer Linie� Element des Randes einer Fläche

� Nicht ausreichend

�Abtasten: Punkte im R3

� Konvexe Hülle

� Versagt bei konkaven Objekten

SS 200214Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Modellklassifizierung nach mathematischer Beschreibung

� Implizite Darstellung � Explizite Darstellung

� Parametrische Darstellung

� Modellklassifizierung nach Bezug zum „realen oder mentalen“ Modell

� Analytisch exakt� Interpolation

� Approximation

0),,( =]\[I

),( \[J] =

210 UU[[

&&&& µλ ++=

Page 8:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

8

SS 200215Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Repräsentations Schemas� Primitve Instancing� Decomposition Models� Constructive Models� Boundary Models� Sweeping

SS 200216Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

Primitive Instancing� Sammlung von vordefinierten Primitiven

� Instantiierung durch beschreibende Parameter� Einfachste Art zur Beschreibung von geometrischen

Objekten

� Nachteil: begrenzte Menge von Primitiven

� Beispiele: (tbrick, 1, h1, h2, w1, w2)

Page 9:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

9

SS 200217Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

$������ �� ��%����� ��&�'�������

Können auch parametrisch definiert werden, z.B. als:� Sweep-Körper um die z-Achse (siehe später)� Einfache Kontroll-Parameter:

Bereiche von z und der Sweep-Winkel� Viele elementare Körper: Kegel, Zylinder (Scheibe), Kugel

(Ellipsoid), Paraboloid, Hyperboloid, Torus,

[ ] 0

1

1,,,

0222222222

=

=+++++++++

����

��

���

��

���

������������������ �

SS 200218Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Decomposition Models�Auch spatial-partioning representation genannt�Basiselemente: primitive instancing

ohne Parametrisierungmit Parametrisierung

�Eine Operation: Glue („Verkleben“)�Variationen

exhaustive enumerationspace subdivisioncell decomposition

Page 10:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

10

SS 200219Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Exhaustive Enumeration� Spatial-occupancy enumeration� Primitive: Block (3D), Rechteck (2D)� Glue-Operation: 3D-array, 2D-array

-> „Farb- und Sichtbarkeitsdefinition“� 2D: Repräsentations-

schema im digitalenBildprozess (digitalimage processing)

7RUXV�UHSUHVHQWHG�E\�VSDWLDO�

RFFXSDQF\�HQXPHUDWLRQ�

SS 200220Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Space Subdivision Schema�Raumunterteilung�Hierarchische Strukturierung

Octree, Quadtreebinary space (Binärraum)

�Knoten zeigt eine Unterteilung an.

�Blatt (on/off) zeigt an,ob Raumelement zumObjekt gehört

Page 11:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

11

SS 200221Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Quadtree Representation� 2D� Unterteilung eines

Rechtecks in viergleichgroße Rechtecke,die kongruent zumAusgangsrechteck sind

SS 200222Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

������������������� ��������������

Page 12:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

12

SS 200223Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

� Octree Representation� 3D� Unterteilung des

„Betrachtungsraumes“in acht Oktanten

�����������������

SS 200224Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Binärraum-Unterteilung� Unterteilung in Halbräume bzw. Halbebenen� Unendliche Ausdehnung des

Betrachtungsraumes

��������

��������

Page 13:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

13

SS 200225Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Zellendekomposition� Vergleich exhaustive

enumeration� Basiselemente: Zellen� Anwendungsgebiet:

z.B. FEM� Nachbarschaftsbe-

ziehungen in„Knoten“ realisiert

SS 200226Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Constructive Models� Mächtigere Operationen als „Glue“� Mengentheroetisch ebzw. Boolean Set

Operationen� ∪ Vereinigung (union)

∩ Durchschnitt (intersection)\ Differenz (hier A\B)

� Variationen�Halbraum-Modell�Constructive Solid Geometry A

B

Page 14:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

14

SS 200227Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Halbraum-Modell� „Primitive“ sind Halbräume

– Unterteilung des R3 inzwei Räume

SS 200228Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Constructive Solid Geometry� Primitive sind begrenzte Elemente – aus Halbräumen

entstanden� Für Benutzer einfacher handhabbar� Primitive: z.B. Würfel, Zylinder, Kugel� Transformationsoperationen – Rotation, Tranlation,

Skalierung� Mengentheoretische Operationen� Schema� Hierarchische Strukturierung� Blatt: Primitiv + Transformierung� Knoten: Operation

Page 15:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

15

SS 200229Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

SS 200230Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Boundary Models� Flächenmodell� „verbessertes graphisches Modell“� Ursprung: polyhedrales

Modell� Boundary Datenstruktur

�Drei Basisobjekttypen:Face (Fläche),Edge (Kante), Vertex (Ecke)

Page 16:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

16

SS 200231Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Modelle� Polygon-based� Vertex-based� Edge-based

SS 200232Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Notwendige Bedingung: Erfüllen topologischer Kriterien

� Aufteilung in zwei getrennte Repräsentationen� Abstrakt – konkret� Algebra – Analysis� Topologie - Geometrie

Page 17:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

17

SS 200233Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Solid models� Entsprechung zu Volumenmodell� Invarianztheorem: Euler Charakteristik

� v – e + f = 2(für polyhedrons)

� Erweiterte Euler-Poincaré-Formel für Flächen mit Löchern� v – e + f = 2 (s – h) –1

s: Schale (shell) -> Körperh: Höhle (hole) -> Körperl: Loch (loop) -> Flächen

SS 200234Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Konsistenzsicherung

Page 18:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

18

SS 200235Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Two-Manifold (Zwei Mannigfaltigkeit)� Definition: Eine Zwei-Mannigfaltigkeit M ist ein

topologische Raum, in dem jeder Punkt eine Umgebung (Nachbarschaft) besitzt, die topologisch äquivalent zu einer offenen Scheibe des R2 ist.

SS 200236Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Ein 3D-Modell kann durch ein 2D-Modell beschriebenwerden

Page 19:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

19

SS 200237Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Non-Manifold� Definition für Two-Manifold versagt

SS 200238Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Sweeping (1)� Modell: i. a. Volumen- intern Flächen-� Primitive: Profil (Cross Section), Pfad

(Trajektorie)� Definition: Ein Swept-Objekt beschreibt die

Punktmenge im R3, die durch Bewegen eines 2D-Profils entlang eines Pfdes überstrichen wird.

Page 20:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

20

SS 200239Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Sweeping (2)� Ausprägungen

�Extrusion (Pfad=Strecke)�Translational (Profile ändert Normalenrichtung nicht)�Rorational, revolving (Pfad ise ein Kreis,

Erweiterung: Kreissegment)�Allgemein, general (Profil ändert Normalenrichtung)

� Anwendungen� 3D-Objekte aus 2D-Objekten erzeugen� 2 1/2D-CAD-Konstruktion

SS 200240Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

Page 21:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

21

SS 200241Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Allgemein: Methode zur Beschreibung einer Punktmenge des Rn durch eine Punktmenge des Rn-1

==> 2D-Sweptobjekt (Profil=Kurve)3D-Sweptobjekt (Profil=Fläche)4D-Sweptobjekt (Profil=Körper)

SS 200242Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Hybride Modelle� Verschiedene Repräsentationen in einem

übergeordneten Modell� Bzgl. Methoden� Bzgl. Realisierung

� Theoretischer Vorteil� Mächtigere Funktionalitätsmenge� Optimale Dualität zwischen Repräsentation und

Modellierungsmethode

� Praktische Probleme� Konvertierung zwischen den Modellen� Konsistenzerhaltung: Modifizierung in einer Repräsentation

müssen in anderen Repräsentationen nachgezogen werden

Page 22:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

22

SS 200243Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

SS 200244Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Interaktives Modellieren (1)� Benutzerfreundlich (High Level Operationen)� Ändern von einzelnen Parametern oder

Werten� Architektur

�User Interface�Mathematische Bibliothek�Datenverwaltung (kurz- und langfristig)

Page 23:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

23

SS 200245Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����������������

� Interaktives Modellieren (2)� Weitere Verbesserungen des

Modellierungsvorgangs durchgraphische Interaktionen

� Selektion� Neue Interaktionstechniken, z. B., Free-Form-

Deformation (FFD)� 3D-Eingabegeräte

� a) graphisch-interaktiv (User Interface),� b) Abtasten (Datenerfassung)

(������� �������)�� �� ���'��*�� ������ �

� Parametrisieren und Instanzieren von Objekten: Würfel, Kugel, ... , Quadriken

� Duplizieren, Spiegeln, Facetten unterteilen� Direct Point Manipulation: „Verschieben“

� Basis: Polygonales (oder Freiform-) Modell� Virtual Sculping: “Modellieren mit Ton”

� Direct Edge / Face Manipulation: Translieren – Rotieren – Skalieren (– Scheren)

� Sweeping � Extrusion (Extrudieren, Lofting) einer Fläche entlang eines

Pfades (z.B. Polyline) Default oft: in Richtung der Normalen� Rotation (lathe, revolve, surface oft revolution)

Page 24:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

24

+�&����������� ���� ���� ,-.

� Beveling: Anphasen “harter” Kanten oder Punkte� Rounding: “Abrunden”� Fillets (wie Bevels, oft durch “sweeping” eines 2D-

Outlines entlang einer Innenkante)

SS 200248Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

+�&����������� ���� ���� ,�.

� Purging (Simplification): Eliminierung “zu kleiner” Polygone, “zu vieler” Eckpunkte

� Aligning: “Verbinden zweier Flächen”� Fitting: Eliminieren kleiner Zwischenräume� Blending: Erzeugung einer Zwischenfläche beim

verbinden zweier Flächen

Page 25:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

25

SS 200249Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

���������

Wirken auf einen Körper / ausgewählte Teile� Lattices / Clusters

Externer Rahmen, unterteilte “Bounding Box” Transformationen dieses Rahmens werden auf das Objekt übertragen

“Modellvorstellung”: Die Objektpunkte sind mit imaginären Federn an die Lattice-Box / den Clustergebunden

� Gut für die Animation benutzbar!

SS 200250Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�������������/� �����0����������'��*��

Subdivide & bevel scale top down

Move vertices up scale down vertices extrude faces

Page 26:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

26

SS 200251Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/� �����0������� ���'��*��

Extrude more & scale extrude down scale inner vertices

Extrude & scale smooth for test

SS 200252Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/� �����0������� ���'��*��

Page 27:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

27

SS 200253Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/� �����0������� ���'��*��

SS 200254Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

+��������� )�� ��

� In fast allen Systemen enthalten; verschiedene Bezeichnungen:� MAX Mesh Smooth� Maya Smoothing� Softimage Rounding

� Idee ist einfach: Durch fortgesetzte Unterteilung eines polygonalen Modells � B-spline patch (���� ���� ��)

Page 28:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

28

SS 200255Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

+��������� )�� ��

Man modeliert und animiert in Low-Res Vor dem Rendern � Subdibvisions

SS 200256Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

'�����

�������: Grobstruktur bleibt sichtbar erhalten! Besonders sichtbar in animierten Sequenzen

� Wenn Subdivison dynamisch beim Rendering durchgeführt wird: ��������

Page 29:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

29

SS 200257Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

1���������� �� ��+����2)�� ��

Je weiter ein Objekt von de virtuellen Kamera entfernt ist (vielleicht wird es nur noch auf 5x10 Pixel abgebildet), um so geringer darf auch sein geometrischer Detailreichtum sein.

Man kann verschiedene Abstraktionsgrade nutzen!

SS 200258Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

1!��

Page 30:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

30

SS 200259Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

1���������

Umschalten während des Renderns; Entfernung Objekt – Kamera d:

� 0 < d <= r1

� r1 < d <= r2

� r2 < d

���������������Problembereiche:

1. Erzeugen der LODs (Modellieren oder Simplification)2. Überblenden zwischen LODs3. LOD Management

SS 200260Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/�&�� ��1!��������������

� Parametrische Flächen werden unterschiedlich stark zerlegt muss nicht statisch sein � ParametrischeFläche als Rendering Primitiv

� Subdivision� Von Hand modelliert (anders abstrahiert!)

Page 31:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

31

SS 200261Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/�&�� ��1!�������+������������

������������� ���������

Häufigste Methode: �����������

Subset placement oder optimal placement (z.B. neuen Punkt suchen)

SS 200262Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/�&�� ��1!�������+������������

Bad collapse:

Kostenfunktion ist aktuelles Forschungsthema

Page 32:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

32

SS 200263Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

#���� � &3���� 1!��

� Sprunghaftes Umschalten �������� wirkt störend:

� Alpha Channel: Transparenz verändern� Wenn Subdivision oder Simplification

genutzt wurde, kann man auch ����� !���"��� nutzen (in Anim & MM)

� ��� �: Entfernungshysterese nutzen!

SS 200264Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

� �������� �� �'�������)��� ��+�����42 �� �

Weniger Punkte �� Weniger Transformationen� Weniger Normalen� Weniger Klippen� Weniger Beleuchtungsrechnungen

Triangle Strip Fig 7.27 7.29

Page 33:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

33

SS 200265Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��������5�������'�������6

������ � ��� immer planar, immer konvex, keine Selbstdurchdringungen� Normale eindeutig bestimmt

Nonplanare Vierecke (Polygone) sind oft Ursache für Renderfehler oder unerwartete Effekte

������ � ����Manche Modelliermethoden (MetaNurbs oder Metaform) erfordern Vierecke (siehe auch Beispiel)

� �� ���� � � ���� �� ��������!���"������ � �#��$��������%������������� ������

� � � �� � � �����&� ���#��� �'��� �() �

SS 200266Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

'��� �0� ������� ����'��*��

Pro Unterschiedliche Netzdichte möglich:hohe Polygonzahl nur dort, wo viele geometrische Details vorliegen

Pro einfach zu verstehen und zu kontrollierenCon Glatte Kurven + Flächen können praktisch nur

mit sehr viel Aufwand erstellt werden; insbeson-dere polygonale Konturlinien bleiben sichtbar

Con Kurven sind nicht akkurat (CAD; Karosseriebau)Con Hoher Speicheraufwand Con kein „natürlicher“ Parameter fürs

Textur-Mapping und die Animation

Page 34:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

34

SS 200267Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

'��&����� )�� �� '������������� �

� Bekanntes Beispiel: Fraktales Terrain Modelingfür Berge, Riffe, ...

� Kann auch zum Animieren genutzt werden� Geringe Modelierungskosten

� Andere Techniken:Fourier Synthese (Landschaften)Partikelsysteme (Feuerwerk, Wasserfälle, ...)

SS 200268Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��������)���� ����� �

� Wichtiger Name: Benoit Mandelbrot� Spezielle SubdivisionTechnik: � Jeder Schritt mit einer eigenen sich ständig

verkleinernden Pertubation� Algorithmus von [Fournier 82]

Page 35:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

35

SS 200269Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

1� +��������� )��� ��+��������

R: Zufallsvariable zwischen –1 und +1����"���� bestimmt den Grad der Veränderung

SS 200270Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

'��&����� �������� ��2)�� �� ,'������������� �.

� Bekanntes Beispiel: Fraktales Terrain Modelingfür Berge, Riffe, ...

� Kann auch zum Animieren genutzt werden� Geringe Modelierungskosten

� Andere Techniken:Fourier Synthese (Landschaften)Partikelsysteme (Feuerwerk, Wasserfälle, ...)

Page 36:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

36

SS 200271Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��������)���� ����� �

� Wichtiger Name: Benoit Mandelbrot� Spezielle SubdivisionTechnik: � Jeder Schritt mit einer eigenen sich ständig

verkleinernden Pertubation� Algorithmus von [Fournier 82]

SS 200272Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

1� +��������� )��� ��+��������

R: Zufallsvariable zwischen –1 und +1����"���� bestimmt den Grad der Veränderung

Page 37:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

37

SS 200273Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

'��������'��*�� �� �����

� Für glatte Flächen benötigt man sehr viele Polygone

� Datenmengen� ggf. schwer zu

animieren: Berechnungsaufwand

� Konturen bleiben trotzdem „#��$��%

Abb. S.30

SS 200274Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

#�������'���������� ���%� �����

*+!� � ,��% ������ )�� ��(in GDV)B-Splines&'(�)

�����������*���$��)������+��$,����(�,�)������

-��,���.��

��������������� ��,/!!

Page 38:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

38

SS 200275Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/� ��� 3 ����������

Anwendungsursprung: Ab ca. 1958 Anwendungen im Automobil-

Karosseriebau: � �(���()�� �-�allgemein �.�Auch wenn vieles in der Differentialgeometrie vorab

entwickelt war.Zwei große Namen:�� �� �*+!� � (Renault): parametrische

Repräsentation auf der Basis der Bernstein-Polynome: System UNISURF

���� ���� �� (Citroen) (nur als interne Berichte veröffentlicht)

SS 200276Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�������������'����� ,-.

Grundlegende Idee: uraltes Verfahren aus der

GießereitechnikAn der )�������ist das

bewegliche ��,$��� noch unveränderlich; modellhaft könnte dieses sich während der Bewegung verändern

� Biparametrisches Patch

Page 39:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

39

SS 200277Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�������������'����� ,�.

a) Gegeben: drei Randkurven AB, BC, CD (hier als kubische Bezier-Kurven mit ihren Kontrollpolygonen)

b) Die Kurve BC wird entlang BA und CD verschoben. Die Form kann sich dabei ändern!

c) Während des Verschiebens verändern sich die Punkte p1und p2 und erzeugen neue Linien EFGH und IJKL

d) Es entstehen die 16 Kontrollpunkte (A, B, ..., P) und damit 9 Vierecke, die ein bikubisches parametrischesBezier-Patch definieren.

SS 200278Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��� ��%�&�����&�'���������� 7��� � ���%��

Eine parametrische Kurve im 3D ist durch drei univariate Funktionen definiert:

Entsprechendes gilt für eine parametrische Fläche

Ein solches Flächenelement nennt man ���� .

10

))(),(),(()

≤≤=

�,�$

�0�1�2��/

1010

)),(),,(),,((),

≤≤≤≤=

.����,�$

.�0.�1.�2.��/

Page 40:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

40

SS 200279Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

83���� ��� (���� �� ���%� �����

�� 7��� �����%�� � 3��6

Formen der Darstellung von Kurven oder Flächen:� 01�!��� ��1�!��� ��� ������

Kurze Diskussion am Beispiel der Kurven:

SS 200280Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/9���&���������� �

� y = f(x)

� Bsp.:

� Probleme:� Für ein x darf es nur einen y Wert geben

(Probleme z.B. ist ein Kreis nicht geschlossen darstellbar)

� Beschreibung nicht invariant gegenüber Rotationen� Keine Kurven mit (echt) vertikalen Tangenten möglich

(impliziert unendliche Steigung)

��� −= 3

Page 41:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

41

SS 200281Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

:����&���������� �

� f(x,y) = 0

� Bsp.:

� Probleme:� Gleichung kann mehr Lösungen als gewollt

haben, was zur Notwendigkeit von Randbedingungen führt

� Richtung der Tangente ist schwer zu ermitteln

02 223 =−+− ����

SS 200282Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

'������������������ �

� Q(t) = ( x(t), y(t) )� Bsp.:

� Vorteile:� Keine Mehrdeutigkeiten� Geometrische Steigungen (potentiell unendlich)

werden durch Tangentenvektoren (niemals unendlich) ersetzt

� Invarianz gegenüber Rotationen

� Wir verwenden daher im folgenden nur die 1�� ������ ����� ���

),()( 32 ����� −=

Page 42:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

42

SS 200283Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

'����������7��� ��� � �7� ������� ��

Parametrische Kurven sind i.d.R. � (ganzrationale) Polynome� gebrochen rationale Polynome

n-ten Grades (n: höchster auftretender Exponent), z.B.

In der CG werden ganz überwiegend kubische (also k=3) Repräsentationen genutzt:

N

N�������� ++++= ...)( 2

210/

SS 200284Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

)*� ���������� ��� 7��� ,� ���%�� .

� Exakte Darstellung� Jeder Punkt ist durch eine Formel definiert� Problem: Formel ist meist nicht bekannt oder zu

komplex

� Interpolatorische Darstellung� Kurve ist durch Stützstellenbedingungen beschrieben � Kurve ist an den Stützstellen determiniert

� Approximative Darstellung� Kurve ist durch Stützstellenbedingungen beschrieben� Kurve ist an den Stützstellen nicht determiniert

Page 43:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

43

SS 200285Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

: ���������

� Interpolation mit Monomen� Gesucht sind die Koeffizienten eines Polynoms P(t)

derart, daß P(ti) = Pi für alle Stützpunkte Pi gilt

� Für n+1 paarweise verschiedene Stützpunkte gibt es genau ein Polynom vom Grad n, das die obige Bedingung erfüllt

� Nachteil: Berechnung der Koeffizienten ist aufwendig

� Nachteil: Änderung eines Stützpunktes bedingt Neuberechnung aller Koeffizienten

SS 200286Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

���������: ���������

� Interpolation mit Newton-Polynomen

� Rekursive Berechnung der Koeffizienten kj mittels der dividierten Differenzen

� Vorteil: Neu hinzugefügter Punkt bedeutet nur eine weitere Stufe in dem Differenzschema

)()()()( 110 −−⋅⋅−⋅−=LL�������� �

∑=

⋅=Q

M

MM�����

0

)()(

Page 44:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

44

SS 200287Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

: ���������

� Eine Reihe weiterer Interpolationsschemata sind üblich (z.B. Lagrange Polynome, TschebyscheffPolynome oder rationale Funktionen als Basisfunktionen)

� Unabhängig von der Methode hat Interpolation immer das Problem der 2�!�����, insbesondere bei hohem Polynomgrad n

� Interpolation liefert schlechte Qualität in praktischen Anwendungen (Kurven sind nicht „glatt“ genug)

SS 200288Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

!�&������� ���������: ���������

� Beispiel:

Interpolationspolynom

“Erwarteter” Verlauf

Page 45:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

45

SS 200289Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����9������

� Ziel: Vermeidung von Oszillationsproblemen

� Abschwächung der geometrischen Bedingungen: Nicht alle Stützpunkte liegen notwendigerweise auf der Kurve, also nicht alle Punkte werden interpoliert

� Einführung anderer Bedingungen als Stützpunkte (z.B. Betrag und Richtung von Tangentenvektoren)

� Problem: Aussehen der Kurve ist allgemein aus den Randbedingungen schwieriger vorhersagbar, aber spezielle Polynome haben interessante Eigenschaften

SS 200290Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����9������ ���'��* �� ������ ������ �

�#$�3��$������

����������4��#$��,�$

��

L

L

:

:)(

)((u)k

0i

L

L

1

1/ ∑=

=

Page 46:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

46

SS 200291Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����9������ ���'��* ��

� Grad n = 1:Polygonzug, unstetige Steigungen an den Eckpunkten

� Grad n = 2:In 3D können nur planare Kurven erhalten werden (d.h. Kurve liegt immer in einer Ebene)

� 3�����4���56���� �7�8Die vier Koeffizienten können z.B. durch Startpunkt, Endpunkt, Tangente am Startpunkt, Tangente am Endpunkt gegeben werden

� Grad n > 3:Rechenaufwendig, nur in speziellen Anwendungen benutzt

∑=

=k

0i

)((u) ��LL

1/1i Kontrollpunktebi(u) Basisfunktionen

Polynome vom Grad n

SS 200292Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�����9������ �����9������3��

� Der dritte Faktor heißt 3 �� ��� % �����3, die pi sind geometrische Nebenbedingungen (z.B. Kontrollpunkte oder definieren Tangentenvektoren, etc.)

� Das Produkt aus U und M ergibt die * �����(������� �(diese gewichten die den Geometrievektor (die geometrischen Nebenbedingungen pi)

⋅⋅==

4

3

2

1

23 1] u u [u z(u)] y(u)[x(u)(u)

�/

��� � �% ����� *�������0 3 �� ��� % ����k=3 � 4x4 (Kontrollpunkte)

*���(������� ���� ��* ������ ��������

Page 47:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

47

SS 200293Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��� ��%�&�����&���������� ����������� ��%��

Ein Punkt Q = (x,y,z) der Fläche im kartesischen Raum ist durch (u,v) im Parameterraum bestimmt.

Mann nennt solche Flächen auch " ����()�� �.

Komplizierte Flächen werden durch eine Menge von solchen Flächenelemente (Patches) zusammengesetzt.

�#$�3��$�������,�$

.����.�

ML

ML

L M

LM

16:

)()(),(

,

3

0

3

0∑∑= =

=/

[ ] [ ]

=

==

=

3330

0300

23123 11

),(

��

��

+.++..++�+��

.�

���

3

�9

�9$3�/7

7

zenBasismatri

:�$-

SS 200294Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

���3������ ���0�2!�"��;���2)����

a) Wireframe Darstellung für Linien konstanten u und v.Ein Patch (von 32) ist schattiert.

b) Darstellung der Patch-Kantenc) Wireframe der Kontrollpunkte.

Page 48:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

48

SS 200295Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

(������/�� ������ ,-.,7� �9<���.

Ohne Beweis:

Wenn gilt:

und bi sind im Definitionsbereich von u nichtnegativ, dann liegt kein Punkt der Kurve außerhalb des durch die Kontrollpunkte gegebenenen Polygons.

Ähnliches läßt sich für Flächen beweisen: Polygon�Polyhedron

∑=

=N

L

L��

0

1)(

SS 200296Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

(������/�� ������ ,�.,: ����� & �� ������� ������� � .

Gegeben sei eine Kurve im Raum.

Auf alle Punkte diese Kurve wird eine affine Transformation Φausgeführt. Wenn die so entstehende Kurve identisch zu der ist, die entsteht, wenn man die Kontrollpunkte der Kurve transformiert und hieraus die Kurve berechnet, also

sagt man die Basis bi ist ��%������ � �6� ��((�� ��.������� �.

.������# Die perspektivische Transformation ist keine affine Transformation

∑=

Φ=Φk

0i

)())(((u))( ��LL

1/

Page 49:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

49

SS 200297Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

(������/�� ������ ,�.7� �� ���%�

= Glattheit (�,��$"����+�5��$����$� � Besonders wichtig beim Anfügen von Kurven oder

Flächenstücken

� Wir unterscheiden:� ��� ������ ,��������)�

� 3 �� ������ �,��������)�Q

Q

Q

Q

Q

�$$6�

�$$6�

$3��$����$75"�����,�$���)()(

: 21 =

00

21

1;n ,0 mit

)()(

:

�$$6�

�$$6�

$3��$����$7"����,�$���5�Q

Q

Q

Q

Q

=≥>

= α

SS 200298Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�=&�� 7���

Eine Bézier Kurve ist gegeben durch

enoeffizientBinominalkdiesind)!(!

!

)1()(

)((u)

,

n

0i,

����

,�$

����

��

L

Q

LQL

L

Q

QL

QL

−=

−=

=

=∑ L1/

Die Bi,n nennt man Bernstein-Polynome

Page 50:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

50

SS 200299Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

7�������=&�� 7��� >�

33,3

23,2

23,1

33,0

3

0i3,

)(

)1(3)(

)1(3)(

)1()(

)((u)

���

����

����

���

,�$��L

=

−=

−=

−=

= ∑=

L1/

Bezier Basisfunktionen

•Beobachtungen: p0 hat dominierenden Einfluss für u < 0,1•Mit wachsendem u haben nimmt der Einfluss der andere Kontrollpunkte zu

•Mann nennt die Basis Funktionen auch �����������5$����

SS 2002100Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

���������7�������=&�� 7���

Eine erste interessante Eigenschaft:Steigung der Kurve in �1 ist gegeben durch den Vektor �1-�2Entsprechendes gilt für �3, �4

Page 51:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

51

SS 2002101Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/� ���� ������������� ��� �0����"��

Seien p0, p1, ..., pn die Kontrollpunkte einer Bezier-Kurve. Wir definieren:,

5�81/5�8

11

111

Q

�=

=−=

=

+−= −+

���5"���$�,,$3��.����

��46��#$���8�������

���

��

,�$

�����

LL

U

L

U

L

U

L

)(

,...,0

,...,1

)()()1()(

0

11

1

001

)(30 �9=1

2112

01 121

111

101

031

021

011

SS 2002102Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��7� �������� ����&�� ����0����"��

001

301

2112

01 121

111

101

031

021

011

ligonKontrollpo Das :0L

1

0,7

0,7

0,7

0,7

0,70,7

Iteration erste Die :1L

1

Iteration zweite Die :2L

1

0,7t tKurvenpunk Der

Iteration dritte Die :30

=1

Für alle 0 <= t <= 1 ergibtdieses Vorgehen einen Punkt auf der Kurve und damit die Kurve selbst

Page 52:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

52

SS 2002103Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/� 3���������?������ �����9?������ ���&��7���

−−

−−

⋅===

4

3

2

1

23

0001

0033

0363

1331

1] u u [u z(u)] y(u)[x(u)(u)

1

1

1

1

�9�/&%

Multipliziert man die Basismatrix �B mit dem Parametervektor 9 so errechnen sich die Basisfunktionen ������������5$���� :

%9�=),,,( 3,33,23,13,0 ����

SS 2002104Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

����� &�� �� �=&��27���

Diese Ableitungen sind also die Tangentenvektoren an den Endpunkten der Kurve:

1. Bezier: Interpoliert durch die Endpunkte

2. Zwei Weitere Kontrollpunkte bestimmen die Tangenten

)(3)1()()1(

)(3)0()()0(

233

1

3

1111

1111����

−= →−=

−= →−=

•=

•=

9���

�9

9���

�9

Q

QQ

Q

Page 53:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

53

SS 2002105Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

� ���� ��� �=&�� 7���

Zwei Bézier-Kurven Q und R mit den Kontrollpunkten qi und ri

C0 Kontinuität: q3 = r0

G1 Kontinuität (Geometrische Kontinuität): Tangentenrichtungen gleich

C1 Kontinuität(Parametrische Kontinuität)

���(

���9 )0()3( =

SS 2002106Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/�3���� �&���=&����%��

��5$������������

.���

.���.�

,�$

.�

QMQL

QM

N

L

N

M

QLLM

oder

ionenBasisfunktBéziersind)(),(

)()(),(

nkteKontrollpu16derMatrix:

nzvektorenZeilenpoteundReihen:,

xBasismatriBézier:

),(

,,

,0 0

,∑∑= =

=

=

1/

�9

���9�/

&

%

7

%&%

Beachte: Die Randkurven eines BézierPatches sind Bézier Kurven

Page 54:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

54

SS 2002107Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

8����� ��� �� ��%��

3,...,0

),0(),1(

tKontinuitäC

03

0

==⇔=

��:

..

LL

�/

C1 Kontinuität wesentlich schwieriger!

SS 2002108Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

0- 7� �� ���%����&��2��%��

Bedingung ist sehr einschränkend.

Freiheitsgrade reduzieren sich stark.

Probleme beim Deformieren solcher Flächen; es entstehen leicht Stufen.

(ggf. lockern der Kontinuitäts-bedingungen möglich)

+∈=

−=−

IR;3,...,0

)( 0123

#�

��#::LLLL

Page 55:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

55

SS 2002109Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

8����� ����� ���/�� ������ ��

�=&�� 7��� � ���%�� � Der Polynomgrad eines Kurvensegmentes ist um Eins

kleiner als die Anzahl der Punkte des Kontrollpolygons� Der erste und letzte Punkt des Kontrollpolygons werden

interpoliert� Der Tangentenvektor am Anfang und Ende der Kurve

haben die gleiche Richtung wie die erste resp. letzte Kante des Kontrollpolygons

� Die Kurve verläuft innerhalb der konvexen Hülle des Kontrollpolygons

� Die Kurve ist invariant gegenüber affinen Transformationen

SS 2002110Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

8����� ����� ��=&�� 7��� � ���%��

� Zwei entscheidende Nachteile beschränken die Flexibilität:� Feste Kopplung zwischen Polygongrad und der Anzahl

der Kontrollpunkte� Änderungen der Kontrollpunkte wirken innerhalb des

Bezier-Spans (des Patches) global� Historisch bedeutende Repräsentation� Bézier Kurven noch oft genutzt, insbesondere in 2D

Anwendungen: Kontrolle der Endpunkte und der Tangenten

� Bézier Flächen durch Verlust der Freiheitsgrade beim Modellieren beschränkt einsetzbar

� Häufig als Render-Primitiv genutzt.

Page 56:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

56

SS 2002111Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

8����� ����� ��2+��� �

� Die einschränkende Inflexibilität der Bézier-Kurven werden überwunden� Feste Kopplung zwischen Polygongrad und der Anzahl

der Kontrollpunkte� Änderungen der Kontrollpunkte wirken innerhalb des

Bezier-Spans (des Patches) global� C2 Kontinuität per Definition� Es gibt vielfältige „handles“ die die Form der

Basisfunktionen und damit die Form der entstehenden Kurve beeinflussen: sehr wichtig ��������(��� �*:'1�� �

� .� �# Kegelschnitte lassen sich allgemein nicht durch B-Splines repräsentieren

SS 2002112Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

?;��+?� ; ���������� ���2+��� �

� Idee: Benutzung von rationalen Formen� Dazu: Definition von Kurven Kontrollpunkte in 4D

homogenen Koordinaten �polynomiale Funktionen in 4D RaumRückprojektion in den 3D

� Konsequenz: Kurve wird durch gebrochen-rationale Funktionen definiert (Division durch die homogene Koordinate)

Page 57:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

57

SS 2002113Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��� ���� ?;��+

+

=

+

=

+

=

=

=

1

1,

1

1,

1

1,

)(

)()(

)()(

�#�

�#��

�#�

"

$&"

$&"�$6

$&�$6

L

L

L

Ein weiterer Kontrollhandlean jedem Kontrollpunkt hi

SS 2002114Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

5������� ?;��+

� Invarianz gegenüber Rotation, Skalierung, Translation ����1 ��1 ���%���� ��"���(������� (d.h. nur die Kontroll-punkte müssen transformiert werden und nicht jeder Punkt der Kurve)

� NURBS können Kegelschnitte exakt beschreiben

Page 58:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

58

SS 2002115Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��� ���� �� 3��� 7���

� Es gibt eine große Spannbreite weiterer Kurven-definitionen mit jeweils spezifischen Eigenschaften� β-Splines� Catmull-Rom Splines� ...

� Es gibt keine „beste“ Kurvenrepräsentation, diese muß anwendungsabhängig gewählt werden (heute werden sehr oft NURBS verwendet)

SS 2002116Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

7� ����� &3���� ������� ���%� �����

Eine der großen Vorteile der Matrixdarstellung ist, daß man einfach ableiten kann, wie sich verschiedene Repräsentationen ineinander überführen lassen:

3 � � �: Der Satz �j der Kontrollpunkte in der Repräsentation �j. Gesucht ist die gleiche Kurve in der Repräsentation �i, also die Kontrollpunkte �i.

MMLL

MMLL

MMLL

����

����

�9��9�

1−=

=

=

Page 59:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

59

SS 2002117Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��� ���� �� ��%��

� Erweiterung von Kurven auf Flächen: Kurven beschreiben Schnitte von Flächen

� Freiformflächen (Erweiterung der allgemeinen Darstellung):

5�-%8�4�"5�8���35%8�4�"5�8���3��" '5%8"

SS 2002118Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

���������������������������������

������������ ������

��� ��5������8�: direkte Manipulation der Eckpunkte

*+!� �# Die Kurve geht durch die Kontrollpunkte; zusätlich Tangenten

Page 60:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

60

SS 2002119Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�������������

*:'1�� : ggf. weit entfernt liegende Kontrollpunkte – auch außerhalb des Patches

$9�*�#�Zusätzliche Gewichte an den Kontrollpunkten, zur Einstellung der Steigungen

SS 2002120Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/�� �������� � !������

;0���� : Sweeping eines Profiles (Kurve) entlang einer Strecke oder eines Pfades (Kurve)

��� <� %�% = Rotationales Sweeping

Page 61:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

61

SS 2002121Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

��� ��� �'���� � �?;��� !������

'������� 59:�(���� ���:�(�8Gleiche Möglichkeiten wie Lofting

��(���� : Extrude mit versciedenen Profilen

SS 2002122Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

/�3����'����!������

*�������= 3 oder 4 Kurven definieren den Rand eines Patches

*��� = Sweeping eines Profiles entlang zweier Schienen

Page 62:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

62

SS 2002123Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

+�&���7��� ������� ���?;���

,��% ���(�� ��2� �()�� �:durch Projektion oder das direkte Zeichnen auf der Oberfläche

"���� : erlauben das Ausschneiden von Teilen aus der Oberfläche

SS 2002124Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

�������� �� �� ���� ?;��+0��������

Page 63:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

63

SS 2002125Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

+����0����������?;��+

SS 2002126Graphische Datenverarbeitung13. Geometrie-Repräsentationenl© Prof. Dr.-Ing. Detlef Krömker

+����0������� ���?;��+

Page 64:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

64

#�� ����� 0��2���

� sehr oft benutzt:DXF (Drawing Interchange Format), AutodeskHauptproblem: fehlende Topologieinformation

� andere CAD-Formate:� IGES� VDAFS (VDA-Flächenschnittstelle)� STEP

� Haben sehr schnell an Bedeutung gewonnen, Zukunft unsicher VRML 1.0 (Virtual Reality Modeling Language)VRML 2.0 (August 1996, ISO/IEC SC24, CD)

<��������������#�� ����� 0��2���

� i.d.R. anderes Modellierungsziel!� Übermodellierung: zu detailreich!

� Oft auch Qualitätsprobleme:� “Löcher”� Topologiefehler� isolierte Kanten, Punkte, ...

Page 65:  · 1 Prof. Dr.-Ing. Detlef Krömker *RHWKH 8QLYHUVLWlW )UDQNIXUW *UDSKLVFKH'DWHQYHUDUEHLWXQJ Geometrie-Repräsentationen 2 SS 2002 Graphische Datenverarbeitung

65

��2+�� � �

� Prinzip: � Tiefenmessung: Punkt, Gitter, Kreise, ...� cross sections, slices, outlines: “Höhenlinien”

� geschlossene 2D-Kurven; gleiche Anzahl Punkte

� Extrusion erzeugt 3D-Objekt: Triangle-Mesh

� Probleme:� i.d.R. Abtastfehler bei inhomogener Oberfläche

des Originals� “verdeckte” Geometrieteile � sehr viele Polygone --> Nachbearbeitung

� Beispiel: Cyberware Scanner

5�3� ��)�� �� '������������

� Verfahren zur Objektrekonstruktionbekannt und entwickelt zur Bauaufnahmeauch Luftbild/Satellitenbildauswertung

� Verfahren sehr vielfältig:� Theodolitgestützte Verfahren� Industriemeßverfahren (Einzelpunkte)� Photographische Verfahren, z.B.

� Shape from Shading� Shape from Texture� Stereoskopische Verfahren