29
Calcium Channel Blocking Drugs

Calcium Channel Blockers

Embed Size (px)

DESCRIPTION

Calcium Channel Blockers

Citation preview

Page 1: Calcium Channel Blockers

Calcium Channel Blocking Drugs

Page 2: Calcium Channel Blockers

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 3: Calcium Channel Blockers

Chemical Type Chemical Names Brand Names

Phenylalkylamines

verapamil Calan,Calna SR,Isoptin SR,Verelan

Benzothiazepines diltiazem Cardizem CD,Dilacor XR

1,4-Dihydropyridines

Nifedipine  nicardipineisradipinefelodipineamlodipine

Adalat CC,Procardia XL CardeneDynaCircPlendilNorvasc

Three Classes of CCBs

Page 4: Calcium Channel Blockers

Angina pectoris

Hypertension

Treatment of supraventricular

arrhythmias

- Atrial Flutter

- Atrial Fibrillation

- Paroxysmal SVT

Widespread use of CCBs

Page 5: Calcium Channel Blockers

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 6: Calcium Channel Blockers

The Three Classes of CCBs Bind to Different Sites

1,4-Dihydropyridines

(nifedipine)

Phenylalkylamines(verapamil)

Benzothiazepines(diltiazem)

Ca2+

pore

-

- -

-++-

Page 7: Calcium Channel Blockers

Increase the time that Ca2+ channels are closed

Relaxation of the arterial smooth muscle but not much effect on venous smooth muscle

Significant reduction in afterload but not preload

CCBs – Mechanisms of Action

Page 8: Calcium Channel Blockers

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 9: Calcium Channel Blockers

Why Do CCBs Act Selectively on Cardiac and Vascular Muscle?

Page 10: Calcium Channel Blockers

N-type and P-type Ca2+ channels mediate neurotransmitter release in neurons

postsynaptic cell

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Page 11: Calcium Channel Blockers

MyofibrilPlasma membrane

Transverse tubule

Terminal cisterna ofSR

Tubules ofSR

TriadTSR

Skeletal muscle relies on intracellularCa2+ for contraction

Page 12: Calcium Channel Blockers

Cardiac cells rely on L-type Ca2+ channels for contraction and for the upstroke of the AP in slow response cells

Contractile Cells(atria, ventricle)

L-Type

Ca2+

Ca2+ Ca2+

Slow Response Cells(SA node, AV node)

L-Type

Ca2+

Ca2+

Page 13: Calcium Channel Blockers

Vascular smooth muscle relies on Ca2+ influxthrough L-type Ca2+ channels for contraction

(graded, Ca2+ dependentcontraction)

L-Type

Ca2+

Page 14: Calcium Channel Blockers

CCBs Act Selectively on Cardiovascular Tissues

Neurons rely on N-and P-type Ca2+ channels

Skeletal muscle relies primarily on [Ca]i

Cardiac muscle requires Ca2+ influx through L-type Ca2+ channels - contraction (fast response cells) - upstroke of AP (slow response cells)

Vascular smooth muscle requires Ca2+ influx

through L-type Ca2+ channels for contraction

Page 15: Calcium Channel Blockers

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 16: Calcium Channel Blockers

Differential effects of different CCBs on CV cells

AV

SN

AV

SN

Potential reflexincrease inHR, myocardialcontractilityand O2 demand

CoronaryVD

Dihydropyridines: Selective vasodilators Non -dihydropyridines: equipotent forcardiac tissue and vasculature

Heart ratemoderating

Peripheraland coronaryvasodilation

Reducedinotropism

Peripheralvasodilation

Page 17: Calcium Channel Blockers

Effect Verapamil Diltiazem Nifedipine

Peripheralvasodilatation

Coronaryvasodilatation

Preload 0 0 0/

Afterload

Contractility 0/ / *

Heart rate 0/ /0

AV conduction 0

Hemodynamic Effects of CCBs

Page 18: Calcium Channel Blockers

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 19: Calcium Channel Blockers

AgentOral

Absorption(%)

Bioavail-Ability

(%)

ProteinBound

(%)

Elimination

Half-Life(h)

Verapamil >90 10-35 83-92 2.8-6.3*

Diltiazem >90 41-67 77-80 3.5-7

Nifedipine >90 45-86 92-98 1.9-5.8Nicardipin

e-100 35 >95 2-4

Isradipine >90 15-24 >95 8-9

Felodipine -100 20 >99 11-16Amlodipin

e>90 64-90 97-99 30-50

CCBs: Pharmacokinetics

Page 20: Calcium Channel Blockers

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 21: Calcium Channel Blockers

  Diltiazem Verapamil Dihydropyridines

Overall 0-3% 10-14% 9-39%

Hypotension ++ ++ +++

Headaches 0 + +++Peripheral

Edema ++ ++ +++

Constipation 0 ++ 0

CHF (Worsen) 0 + 0

AV block + ++ 0Caution w/beta

blockers+ ++ 0

Comparative Adverse Effects

Page 22: Calcium Channel Blockers

heart rate

blood pressure

anginal symptoms

signs of CHF

adverse effects

CCBs - Monitoring

Page 23: Calcium Channel Blockers

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 24: Calcium Channel Blockers

Contraindication Verapamil Nifedipine Diltiazem

Hypotension + ++ +

Sinus bradycardia + 0 +

AV conduction defects ++ 0 ++

Severe cardiac failure ++ + +

Contradications for CCBs

Page 25: Calcium Channel Blockers

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 26: Calcium Channel Blockers

Which CCB is most likely to cause hypotension and reflex tachycardia?

A. Diltiazem

B. Nifedipine

C. Verapamil

Page 27: Calcium Channel Blockers

Contraindications for CCBs include (choose all appropriate):

A. Supraventricular tachycardias

B. Hypotension

C. AV heart block

D. Hypertension

E. Congestive heart failure

Page 28: Calcium Channel Blockers

CCBs may improve cardiac function by:

A. Reducing cardiac afterload

B. Increasing O2 supply

C. Decreasing cardiac preload

D. Normalizing heart rate in patients with

supraventricular tachycardias

Page 29: Calcium Channel Blockers

Thank you!