13
Termodinamika dalam kehidupan sehari-hari Termodinamika dalam kehidupan sehari-hari Termodinamika sudah sangat tidak asing didalam kehidupan sehari-hari, banyak sekali peristiwa termodinamika yang terjadi dalam kehidupan. Sebagai contohnya perubahan suhu yang terdapat pada badan kita, kemudian beberapa peralatan rumah tangga yang menggunakan konsep termodinamika dan beberapa peralatan lainnya. Termodinamika telah merubah sistem industri didunia, dari yang mulanya menggeunakan kayu bakar untuk memasak sampai menggunakan listrik untuk memasak. Hal ini karena termodinamika merupakan hukum-hukum yang menyangkut banyak hal dalam kehidupan sehari-hari. Salah satu contoh yang paling sederhana adalah es didalam gelas yang menyebabkan terjadi pengembunan diluar gelas, padahal terpisahkan oleh medium gelas (glass) yang memisahkan permukaan luar dan permukaan dalam. Proses timbulnya air pada permuakaan gelas itu menandakan adanya suatu sistem yang terjadi pada perstiwa ini, sistem yang terjadi adalah bahwa udara yang ada di sekeliling gelas mengandung uap air.Ketika gelas diisi es, gelas menjadi dingin. Udara yang bersentuhan dengan gelas dingin ini akan turun suhunya. Uap air yang ada di udara pun ikut mendingin. Jika suhunya sudah cukup dingin, uap air ini akan mengembun membentuk tetes-tetes air di bagian luar gelas. Hal ini merupakan peristiwa termodinamika yang sesuai dengan hukum termodinamika yang ke dua yang berbunyi Berikut “Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya, dari hukum ini proses yang terjadi didalam gelas merupakan proses penyerapan panas dengan kata lain udara akan berubah menjadi dingin, sementar udara mengandung kadar air yang tinggi pda kelembaban yang tinggi, sehingga ketika udara dingin akan membuatnya mengembun sehingga timbul air pada permukaan luar pada gelas.

Termodinamika Dalam Kehidupan Sehari

Embed Size (px)

DESCRIPTION

Termomodinamika

Citation preview

Termodinamika dalam kehidupan sehari-hari

Termodinamika dalam kehidupan sehari-hari

Termodinamika sudah sangat tidak asing didalam kehidupan sehari-hari, banyak sekali peristiwa termodinamika yang terjadi dalam kehidupan. Sebagai contohnya perubahan suhu yang terdapat pada badan kita, kemudian beberapa peralatan rumah tangga yang menggunakan konsep termodinamika dan beberapa peralatan lainnya.Termodinamika telah merubah sistem industri didunia, dari yang mulanya menggeunakan kayu bakar untuk memasak sampai menggunakan listrik untuk memasak. Hal ini karena termodinamika merupakan hukum-hukum yang menyangkut banyak hal dalam kehidupan sehari-hari. Salah satu contoh yang paling sederhana adalah es didalam gelas yang menyebabkan terjadi pengembunan diluar gelas, padahal terpisahkan oleh medium gelas (glass) yang memisahkan permukaan luar dan permukaan dalam. Proses timbulnya air pada permuakaan gelas itu menandakan adanya suatu sistem yang terjadi pada perstiwa ini, sistem yang terjadi adalah bahwa udara yang ada di sekeliling gelas mengandung uap air.Ketika gelas diisi es, gelas menjadi dingin. Udara yang bersentuhan dengan gelas dingin ini akan turun suhunya. Uap air yang ada di udara pun ikut mendingin. Jika suhunya sudah cukup dingin, uap air ini akan mengembun membentuk tetes-tetes air di bagian luar gelas. Hal ini merupakan peristiwa termodinamika yang sesuai dengan hukum termodinamika yang ke dua yang berbunyi Berikut Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya, dari hukum ini proses yang terjadi didalam gelas merupakan proses penyerapan panas dengan kata lain udara akan berubah menjadi dingin, sementar udara mengandung kadar air yang tinggi pda kelembaban yang tinggi, sehingga ketika udara dingin akan membuatnya mengembun sehingga timbul air pada permukaan luar pada gelas.Dari contoh es pada gelas diatas merupakan sistem pertukaran secara tertutup karena terjadi pertukaran panas tetapi tidak terjadi pertukaran benda dengan menggunakan media pembatas rigid (tidak boleh mempertukarkan kerja) dengan mempertukarkan panas melalui medium gelas.Termos Pada alat rumah tangga tersebut terdapat aplikasi hukum I termodinamika dengan sistem terisolasi. Dimana tabung bagian dalam termos yang digunakan sebagai wadah air, terisolasi dari lingkungan luar karena adanya ruang hampa udara di antara tabung bagian dalam dan luar. Maka dari itu, pada termos tidak terjadi perpindahan kalor maupun benda dari sistem menuju lingkungan maupun sebaliknya.2. Mesin kendaraan bermotor Pada mesin kendaraan bermotor terdapat aplikasi termodinamika dengan sistem terbuka. Dimana ruang didalam silinder mesin merupakan sistem, kemudian campuran bahan bakar dan udara masuk ke dalam silinder, dan gas buang keluar sistem melalui knalpot.

Alat-alat yang menggunakan prinsip termodinamika dalam kehidupan sehari-hari:

Lemari Es (Kulkas) Adalah suatu unit mesin pendingin di pergunakan dalam rumah tangga, untuk menyimpan bahan makanan atau minuman. Untuk menguapkan bahan pendingin di perlukan panas.

Lemari es memanfaatkan sifat ini. Bahan pendingin yang digunakan sudah menguap pada suhu -200C. panas yang diperlukan untuk penguapan ini diambil dari ruang pendingin, karena itu suhu dalam ruangan ini akan turun. Penguapan berlangsung dalam evaporator yang ditempatkan dalam ruang pendingin. Karena sirkulasi udara, ruang pendingin ini akan menjadi dingin seluruhnya. Lemari Es merupakan kebalikan mesin kalor. Lemari Es beroperasi untuk mentransfer kalor keluar dari lingkungan yang sejuk kelingkungn yang hangat. Dengan melakukan kerja W, kalor diambil dari daerah temperatur rendah TL (katakanlah, di dalam lemari Es), dan kalor yang jumlahnya lebih besar dikeluarkan pada temperature tinggi Th (ruangan). Sistem lemari Es yang khas, motor kompresor memaksa gas pada temperatur tinggi melalui penukar kalor (kondensor) di dinding luar lemari Es dimana Qh dikeluarkan dan gas mendingin untuk menjadi cair. Cairan lewat dari daerah yang bertekanan tinggi , melalui katup, ke tabung tekanan rendah di dinding dalam lemari es, cairan tersebut menguap pada tekanan yang lebih rendah ini dan kemudian menyerap kalor (QL) dari bagian dalam lemari es. Fluida kembali ke kompresor dimana siklus dimulai kembali. Lemari Es yang sempurna (yang tidak membutuhkan kerja untuk mengambil kalor dari daerah temperatur rendah ke temperatur tinggi) tidak mungkina ada. Ini merupakan pernyataan Clausius mengenai hukum Termodinamika kedua. Kalor tidak mengalir secara spontan dari benda dingin ke benda panas. Dengan demikian tidak akan ada lemari Es yang sempurna.

Cara Kerja Instalasi Mesin Kulkas Setelah ke dalam kompresor diisi gas freon , maka gas itu dapat dikeluarkan kembali dari silinder oleh kompresor untuk diteruskan ke kondensor, setelah itu menuju saringan, setelah itu menuju ke pipa kapiler dan akan mengalami penahanan. Adanya penahanan ini akan menimbulkan suatu tekanan di dalam pipa kondensor. Sebagai akibatnya gas tersebut menjadi cairan di dalam pipa kondensor. Dari pipa kapiler cairan tersebut terus ke evaporator dan terus menguap untuk menyerap panas. Setelah menjadi gas terus dihisap lagi ke kompresor. Demilian siklus kembali terulang.

Jenis Aliran Udara PendinginJenis aliran udara pada lemari es ada 2 macam :1. Secara alamiah tanpa fan motor, di dalam lemari es udara dingin pada bagian atas dekat evaporator mempunyai berat jenis lebih besar. Dari beratnya sendiri udara dingin akan mengalir ke bagian bawah lemari es. Udara panas pada bagian bawah lemari es karena berat jenisnya lebih kecil dan di desak oleh udara dingin dari atas, akan mengalir naik ke atas menuju evaporator. Udara panas oleh evaporator didinginkan menjadi dingin dan berat lalu mengalir ke bawah lagi. Demikianlah terjadi terus menerus secara alamiah.2. Aliran udara di dalam lemari es dengan di tiup oleh fan motor, lemari es yang memakai fan motor, dapat terjadi sirkulasi udara dingin yang kuat dan merata ke semua bagian dari lemari es. Udara panas di dalam lemari es dihisap oleh fan motor lalu dialirkan melalui evaporator. Udara menjadi dingin dan oleh fan motor di dorong melalui saluran atau cerobong udara, di bagi merata ke semua bagian dalam lemari es.

Dalam kehidupan sehari-hari banyak kita jumpai fenomena yang menggambarkan hukum ke 0 termodinamika. Misalnya pada saat kita membuat air hangat untuk mandi. Kita mencampur air panas dengan air dingin. Pada saat air panas dicampur dengan air dingin, maka kalor akan berpindah dari air panas ke air dingin. Proses perpindahan panas ini berlangsung beberapa saat hingga tercapai kesetimbangan termal antara air panas dengan air dingin. Pada saat tercapai kesetimbangan termal antara air panas dengan air dingin, temperatur air panas akan turun sedangkan temperatur air dingin akan naik menuju ke temperatur kesetimbangan termal.Waktu kita mencelup badan ke dalam air hangat yang sudah mencapai kesetimbangan termal, maka tubuh kita akan merasakan panas air. Hal ini menunjukan ada sebagian kalor yang berpindah dari air ke tubuh kita. Hal ini terjadi karena tubuh memiliki temperatur yang lebih rendah dibandingkan dengan campuran air hangat. Setelah berendam beberapa saat kita tidak akan merasa panas lagi, karena telah tercapai kesetimbangan termal antara tubuh dan air.Waktu kita keluar dari bak mandi setelah berendam dari air panas, maka tubuh akan terasa dingin. Ini terjadi karena temperatur ruangan lebih rendah dibandingkan dengan temperatur tubuh kita akibatnya sejumlah kalor dari tubuh berpindah ke udara di sekitar kita. Pada saat kalor keluar dari tubuh kita, kita akan merasa lebih dingin.Masih banyak lagi contoh penerapan hukum ke 0 termodinamika di sekitar kita.Isobarik --> Memasak air tanpa tertutup wadah dan semua proses pemanasan pada umumnya. Semisal memanaskan udara pada wadah terbuka atau dapat terekspansi secara bebas. Aplikasi umum di Industri apa pada penukar panas (heat exchanger). Penukar panas memanaskan fluida pada tekanan konstan. Contohnya boiler(ketel uap) di PLTU, air dipanaskan hingga menguap pada tekanan konstan. Pendinginan yang dilakukan kulkas juga berlangsung secara isotermal. Udara di kabin didinginkan dengan cara "relatif" tidak mengubah tekanan. Contoh lain pendinginan udara oleh AC, dan lainnya. Isotermal --> Umumnya berkaitan dengan perubahan fasa. Semisal pencairan dan penguapan. Contoh lain ada pada Mesin(engine) dengan daur Stirling atau daur(siklus) Ericsson. Atau proses kompresi pada siklus kriogenik. Kompresi dilakukan bertingkat dengan melakukan pendinginan, sehingga temperatur terjaga konstan. Proses kompresi atau ekspansi umumnya tidak isotermal, hanya jika dilakukan secara lambat, bisa dianggap isotermal. Semisal "memompa"(mengkompresi) ban sepeda secara pelan-pelan.

PENERAPAN PROSES ISOBARIK, ISOKHORIK, ISOTERMAL, DAN ADIABATIK 1. Proses Isobarikv Penerapan Proses IsobarikProses isobarik ini dapat dijumpai pada kasus pemanasan air di dalam ketel mesin uap sampai ke titik didihnya dan diuapkan sampai air menjadi uap, kemudian uap tersebut disuperpanaskan (superheated), dengan semua proses berlangsung pada suatu tekanan konstan.. Sistem tersebut adalah H2O di dalam sebuah wadah yang berbentuk selinder. Sebuah pengisap kedap udara yang tak mempunyai gesekan dibebani dengan pasir untuk menghasilkan tekanan yang didinginkan pada H2O dan untuk mempertahankan tekanan tersebut secara otomatis. Kalor dapat dipindahkan dari lingkungan ke sistem dengan menggunakan sebuah pembakar bunsen. Jika proses tersebut terus berlangsung cukup lama, maka air mendidih dan sebagian air tersebut diubah menjadi uap. Sistem tersebut bereskpansi secara kuasi statik tetapi tekanan yang dikerahkan sistem pada pengisap otomatis akan konstan.

2. Proses Isokhorikv Penerapan Proses IsokhorikTerjadi pada sebuah kipas dan baterai dalam sebuah wadah tertutup. Kipas bisa berputar menggunakan energi yang disumbangkan baterai. Untuk kasus ini, kipas, baterai dan udara yang berada di dalam wadah dianggap sebagai sistem. Ketika kipas berputar, kipas melakukan kerja terhadap udara yang ada dalam wadah. Pada saat yang sama, energi kinetik kipas berubah menjadi energi dalam udara. Energi listrik pada baterai tentu saja berkurang karena sudah berubah bentuk menjadi energi dalam udara. Contoh ini hanya mau menunjukkan bahwa pada proses isokorik (volume selalu konstan), kerja masih bisa dilakukan terhadap sistem (kerja yang tidak melibatkan perubahan volume).Cara ketjanya sebagai berikut :

3. Proses Isotermalv Penerapan Proses IsotermalCara kerja sistem AC ruanganAC alias Air Conditioner alias Pengkondision Udara merupakan seperangkat alat yang mampu mengkondisikan ruangan yang kita inginkan, terutama mengkondisikan ruangan menjadi lebih rendah suhunya dibanding suhu lingkungan sekitarnya. Seperangkat alat tersebut diantaranya kompresor, kondensor, orifice tube, evaporator, katup ekspansi, dan evaporator dengan penjelasan sebagai berikut :Kompresor : Kompresor adalah power unit dari sistem sebuah AC. Ketika AC dijalankan, kompresor mengubah fluida kerja/refrigent berupa gas dari yang bertekanan rendah menjadi gas yang bertekanan tinggi. Gas bertekanan tinggi kemudian diteruskan menuju kondensor.Kondensor :Kondensor adalah sebuah alat yang digunakan untuk mengubah/mendinginkan gas yang bertekanan tinggi berubah menjadi cairan yang bertekanan tinggi. Cairan lalu dialirkan ke orifice tube.Orifice Tube : di mana cairan bertekanan tinggi diturunkan tekanan dan suhunya menjadi cairan dingin bertekanan rendah. Dalam beberapa sistem, selain memasang sebuah orifice tube, dipasang juga katup ekspansi.Katup ekspansi : Katup ekspansi, merupakan komponen terpenting dari sistem. Ini dirancang untuk mengontrol aliran cairan pendingin melalui katup orifice yang merubah wujud cairan menjadi uap ketika zat pendingin meninggalkan katup pemuaian dan memasuki evaporator/pendinginEvaporator/pendingin : refrigent menyerap panas dalam ruangan melalui kumparan pendingin dan kipas evaporator meniupkan udara dingin ke dalam ruangan. Refrigent dalam evaporator mulai berubah kembali menjadi uap bertekanan rendah, tapi masih mengandung sedikit cairan. Campuran refrigent kemudian masuk ke akumulator / pengering. Ini juga dapat berlaku seperti mulut/orifice kedua bagi cairan yang berubah menjadi uap bertekanan rendah yang murni, sebelum melalui kompresor untuk memperoleh tekanan dan beredar dalam sistem lagi. Biasanya, evaporator dipasangi silikon yang berfungsi untuk menyerap kelembapan dari refrigent.Jadi, cara kerja sistem AC dapat diuraikan sebagai berkut :

Kompresor yang ada pada sistem pendingin dipergunakan sebagai alat untuk memampatkan fluida kerja (refrigent), jadi refrigent yang masuk ke dalam kompresor dialirkan ke condenser yang kemudian dimampatkan di kondenser.Di bagian kondenser ini refrigent yang dimampatkan akan berubah fase dari refrigent fase uap menjadi refrigent fase cair, maka refrigent mengeluarkan kalor yaitu kalor penguapan yang terkandung di dalam refrigent. Adapun besarnya kalor yang dilepaskan oleh kondenser adalah jumlahan dari energi kompresor yang diperlukan dan energi kalor yang diambil evaparator dari substansi yang akan didinginkan.Pada kondensor tekanan refrigent yang berada dalam pipa-pipa kondenser relatif jauh lebih tinggi dibandingkan dengan tekanan refrigent yang berada pada pipi-pipa evaporator.Setelah refrigent lewat kondenser dan melepaskan kalor penguapan dari fase uap ke fase cair maka refrigent dilewatkan melalui katup ekspansi, pada katup ekspansi ini refrigent tekanannya diturunkan sehingga refrigent berubah kondisi dari fase cair ke fase uap yang kemudian dialirkan ke evaporator, di dalam evaporator ini refrigent akan berubah keadaannya dari fase cair ke fase uap, perubahan fase ini disebabkan karena tekanan refrigent dibuat sedemikianrupa sehingga refrigent setelah melewati katup ekspansi dan melalui evaporator tekanannya menjadi sangat turun.Hal ini secara praktis dapat dilakukan dengan jalan diameter pipa yang ada dievaporator relatif lebih besar jika dibandingkan dengan diameter pipa yang ada pada kondenser.Dengan adanya perubahan kondisi refrigent dari fase cair ke fase uap maka untuk merubahnya dari fase cair ke refrigent fase uap maka proses ini membutuhkan energi yaitu energi penguapan, dalam hal ini energi yang dipergunakan adalah energi yang berada di dalam substansi yang akan didinginkan.Dengan diambilnya energi yang diambil dalam substansi yang akan didinginkan maka enthalpi [*] substansi yang akan didinginkan akan menjadi turun, dengan turunnya enthalpi maka temperatur dari substansi yang akan didinginkan akan menjadi turun. Proses ini akan berubah terus-menerus sampai terjadi pendinginan yang sesuai dengan keinginan.Dengan adanya mesin pendingin listrik ini maka untuk mendinginkan atau menurunkan temperatur suatu substansi dapat dengan mudah dilakukan.Perlu diketahui :Kunci utama dari AC adalah refrigerant, yang umumnya adalah fluorocarbon [**], yang mengalir dalam sistem, menjadi cairan dan melepaskan panas saat dipompa (diberi tekanan), dan menjadi gas dan menyerap panas ketika tekanan dikurangi. Mekanisme berubahnya refrigerant menjadi cairan lalu gas dengan memberi atau mengurangi tekanan terbagi mejadi dua area: sebuah penyaring udara, kipas, dan cooling coil (kumparan pendingin) yang ada pada sisi ruangan dan sebuah kompresor (pompa), condenser coil (kumparan penukar panas), dan kipas pada jendela luar.Udara panas dari ruangan melewati filter, menuju ke cooling coil yang berisi cairan refrigerant yang dingin, sehingga udara menjadi dingin, lalu melalui teralis/kisi-kisi kembali ke dalam ruangan. Pada kompresor, gas refrigerant dari cooling coil lalu dipanaskan dengan cara pengompresan. Pada condenser coil, refrigerant melepaskan panas dan menjadi cairan, yang tersirkulasi kembali ke cooling coil. Sebuah thermostat [***] mengontrol motor kompresor untuk mengatur suhu ruangan.[*] Entalphi adalah istilah dalam termodinamika yang menyatakan jumlah energi internal dari suatu sistem termodinamika ditambah energi yang digunakan untuk melakukan kerja.[**] Fluorocarbon adalah senyawa organik yang mengandung 1 atau lebih atom Fluorine. Lebih dari 100 fluorocarbon yang telah ditemukan. Kelompok Freon dari fluorocarbon terdiri dari Freon-11 (CCl3F) yang digunakan sebagai bahan aerosol, dan Freon-12 (CCl2F2), umumnya digunakan sebagai bahan refrigerant. Saat ini, freon dianggap sebagai salah satu penyebab lapisan Ozon Bumi menajdi lubang dan menyebabkan sinar UV masuk. Walaupun, hal tersebut belum terbukti sepenuhnya, produksi fluorocarbon mulai dikurangi.[***] Thermostat pada AC beroperasi dengan menggunakanlempeng bimetal yang peka terhadap perubahan suhu ruangan. Lempeng ini terbuat dari 2 metal yang memiliki koefisien pemuaian yang berbeda. Ketika temperatur naik, metal terluar memuai lebih dahulu, sehingga lempeng membengkok dan akhirnya menyentuh sirkuit listrik yang menyebabkan motor AC aktif/jalan.4. Proses Adiabatikv Penerapan Proses AdiabatikPrinsip Kerja Mesin DieselMotor diesel dikategorikan dalam motor bakar torak dan mesin pembakaran dalam (internal combustion engine) (simplenya biasanya disebut mobor bakar saja). Prosip kerja motor diesel adalah merubah energi kimia menjadi energi mekanis. Energi kimia di dapatkan melalui proses reakasi kimia (pembakaran) dari bahan bakar (solar) dan oksidiser (udara) di dalam silinder (ruang bakar).Pada motor diesel ruang bakarnya bisa terdiri dari satu atau lebih tergantung pada penggunaannya dan dalam satu silinder dapat terdiri dari satu atau dua torak. Pada umumnya dalam satu silinder motor diesel hanya memiliki satu torak.Prinsip KerjaTekanan gas hasil pembakaran bahan bakan dan udara akan mendorong torak yang dihubungkan dengan poros engkol menggunakan batang torak, sehingga torak dapat bergerak bolak-balik (reciprocating). Gerak bolak-balik torak akan diubah menjadi gerak rotasi oleh poros engkol (crank shaft). Dan sebaliknya gerak rotasi poros engkol juga diubah menjadi gerak bolak-balik torak pada langkah kompresi.Berdasarkan cara menganalisa sistim kerjanya, motor diesel dibedakan menjadi dua, yaitu motor diesel yang menggunakan sistim airless injection (solid injection) yang dianalisa dengan siklus dual dan motor diesel yang menggunakan sistim air injection yang dianalisa dengan siklus diesel (sedangkan motor bensin dianalisa dengansiklus otto).

Perbedaan antara motor diesel dan motor bensin yang nyata adalah terletak pada proses pembakaran bahan bakar, pada motor bensin pembakaran bahan bakar terjadi karena adanya loncatan api listrik yang dihasilkan oleh dua elektroda busi (spark plug), sedangkan pada motor diesel pembakaran terjadi karena kenaikan temperatur campuran udara dan bahan bakar akibat kompresi torak hingga mencapai temperatur nyala. Karena prinsip penyalaan bahan bakarnya akibat tekanan maka motor diesel juga disebut compression ignition engine sedangkan motor bensin disebut spark ignition engine.